np.random.randint(0, n, size=1)
时间: 2023-11-20 18:59:50 浏览: 91
```python
import numpy as np
# 生成一个0到9之间的随机整数
rand_int = np.random.randint(0, 10, size=1)
print(rand_int)
```
上述代码中,`np.random.randint(0, 10, size=1)`生成一个0到9之间的随机整数,并将其存储在变量`rand_int`中。`size=1`表示生成一个随机整数。
相关问题
# 随机生成一个样本数据 y_true = np.random.randint(0, 2, size=100) y_pred = np.random.randint(0, 2, size=100)
好的,你的第一个问题是关于随机生成样本数据的。你可以使用以下代码来生成一个包含100个元素的数组,数组中的元素都是0或1:
```python
import numpy as np
y_true = np.random.randint(0, 2, size=100)
y_pred = np.random.randint(0, 2, size=100)
```
其中,`np.random.randint(0, 2, size=100)` 表示生成一个大小为100的随机整数数组,每个整数的范围是[0,2),即0或1。`y_true` 和 `y_pred` 分别表示样本的真实标签和预测标签。
matrix_r = np.random.randint(0, 256, size=(128, 128)) print(matrix_r) matrix_g = np.random.randint(0, 256, size=(128, 128)) matrix_b = np.random.randint(0, 256, size=(128, 128)) print(matrix_b) print(matrix_b.shape) # 将三个矩阵拼接成一个3通道128乘128的图片
要将三个矩阵拼接成一个3通道128乘128的图片,可以使用matplotlib库中的imshow函数来实现,代码如下:
```
import matplotlib.pyplot as plt
# 将三个矩阵拼接成一个3通道的矩阵
matrix_rgb = np.dstack((matrix_r, matrix_g, matrix_b))
# 显示图片
plt.imshow(matrix_rgb)
plt.show()
```
其中,dstack函数的作用是将三个矩阵按深度方向进行拼接,生成一个3通道的矩阵。imshow函数的作用是显示图片。最后使用show函数显示图片。
阅读全文