给定一个n*n的方形网格,设左上角为起点,坐标为(1,1),x轴向右为正,y轴向下为正,每

时间: 2023-08-20 17:02:09 浏览: 81
给定一个n*n的方形网格,设左上角为起点,坐标为(1,1),x轴向右为正,y轴向下为正,在每个方格内填入一个整数,使得从起点出发,可以通过向右或向下移动,到达右下角的终点(坐标为(n, n)),要求求出一种方法,使得经过的方格内的数的累加和最小。 解题思路: 这是一个典型的动态规划问题,可以通过递推的方法求解。定义一个n*n的二维数组dp,其中dp[i][j]表示从起点(1,1)到达第i行第j列方格时的最小累加和。则有以下递推式: dp[i][j] = min(dp[i-1][j], dp[i][j-1]) + grid[i][j] 其中grid[i][j]表示第i行第j列方格内的数。从递推式可以看出,每个方格的最小累加和只与其上方和左方的方格相邻的方格有关,可以从起点开始,依次计算每个方格的最小累加和,最后即可得到终点的最小累加和。 具体实现过程: 1. 创建一个n*n的二维数组dp,并将其初始化为0。 2. 从左上角(1,1)开始,依次遍历每个方格。 3. 根据递推式计算方格的最小累加和,并更新dp数组。 4. 遍历完整个方格后,dp[n][n]即为最终答案。 例如,假设给定一个3*3的方形网格,其中的数如下所示: 1 3 1 1 5 1 4 2 1 则累加和最小的路径为:(1,1)->(1,2)->(2,2)->(3,2)->(3,3),最小累加和为7。 通过上述算法,可以在时间复杂度为O(n^2)的情况下,求解出方形网格中的最小累加和。
相关问题

给定一个N*N的方形网络,设其左上角为起点○,坐标为(1,1),X轴向右为正,Y轴向下为正,每个方格边长为1。一辆汽车从起点○出发驶向右下角终点, 其坐标为(M,N)。在若干网格交叉点处,设置了油库,可供汽车在行驶途中,可供汽车在行驶途中加油。汽车在行驶过程中应遵守如下规则:

汽车在行驶过程中应遵守以下规则: 1. 汽车只能向右或向下行驶,即每步只能将横坐标或纵坐标加1。 2. 汽车不能超出网格的边界,即横坐标和纵坐标都不能超过N。 3. 汽车可以选择在油库处加油,但加油次数不能超过给定的次数。 4. 汽车每行驶一个单位距离消耗一个单位的汽油。 5. 汽车每次在油库处加油时,消耗一个单位的时间。 6. 汽车在终点处不需要加油。 汽车的目标是以最少的时间到达终点(M, N)。你可以给出具体的加油策略,以满足上述规则并使得汽车尽可能快地到达终点。

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“start” )。 机

器人每次只能向下或者向右移动一格,直到到达右下角的终点(下图中标记为“end”)。现在给定了一些障碍物用 1 来表示,机器人不能通过。请问机器人能否到达终点? 这是一道动态规划问题。我们可以定义一个二维数组 dp,其中 dp[i][j] 表示机器人到达(i, j)这个位置是否可行(1 表示可行,0 表示不可行)。那么我们需要先初始化 dp 数组: - 如果起点 (0, 0) 有障碍物,dp[0][0] = 0; - 否则,dp[0][0] = 1; - 对于第一行和第一列,如果前一个格子可行并且当前格子没有障碍物,那么当前格子也可行,即 dp[0][j] = dp[0][j-1] && obstacleGrid[0][j] = 0,dp[i][0] = dp[i-1][0] && obstacleGrid[i][0] = 0; - 对于其他格子 (i, j),如果当前格子没有障碍物,那么机器人到达当前格子的路径有两种可能:从上面的格子到达或者从左边的格子到达。即 dp[i][j] = dp[i-1][j] + dp[i][j-1]。 最终,dp[m-1][n-1] 就表示了机器人能否到达终点。如果 dp[m-1][n-1] 为 1,那么可以到达终点;否则不能到达。

相关推荐

最新推荐

recommend-type

python简单算法04:判断一个字符串是否为回文串的排列之一

给定一个字符串,编写一个函数判定其是否为某个回文串的排列之一。 回文串是指正反两个方向都一样的单词或短语,排列是指字母重新排列,回文串不一定是字典中的单词。 例如: 输入:“tactcoa” 输出:True(排列有...
recommend-type

基于EasyX的贪吃蛇小游戏 - C语言

基于EasyX的贪吃蛇小游戏 - C语言
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB遗传算法自动优化指南:解放算法调优,提升效率

![MATLAB遗传算法自动优化指南:解放算法调优,提升效率](https://help-static-aliyun-doc.aliyuncs.com/assets/img/zh-CN/8487939061/p208348.png) # 1. MATLAB遗传算法概述** 遗传算法是一种受生物进化启发的优化算法,它模拟了自然选择和遗传的过程。在MATLAB中,遗传算法工具箱提供了丰富的函数和类,用于创建和运行遗传算法。 **1.1 遗传算法的基本原理** 遗传算法的工作原理如下: - **初始化:**创建由随机个体组成的初始种群。 - **评估:**根据目标函数计算每个个体的适应度。 -
recommend-type

failed to register layer: ApplyLayer exit status 1 stdout: stderr: archive/tar: invalid tar header

很抱歉听到这个问题。这个错误通常是由于Docker镜像损坏或Docker存储库中缺少所需的图层引起的。您可以尝试以下几种方法来解决这个问题: 1. 清理Docker镜像和容器:使用命令“docker system prune”清理不再使用的Docker对象。 2. 检查Docker存储库:确保您正在使用可靠的Docker存储库,并检查是否存在所有必需的图层。 3. 重新下载Docker镜像:如果您确定问题是由于损坏的Docker镜像引起的,则可以尝试重新下载Docker镜像。 4. 更新Docker版本:如果您使用的是旧版Docker,则可能会出现此问题。尝试更新到最新版本的Docke
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB遗传算法大数据优化指南:应对海量数据挑战,挖掘数据价值

![MATLAB遗传算法大数据优化指南:应对海量数据挑战,挖掘数据价值](https://ask.qcloudimg.com/http-save/8934644/c34d493439acba451f8547f22d50e1b4.png) # 1. 遗传算法简介** 遗传算法(GA)是一种受进化论启发的优化算法,它模拟了生物体的自然选择和遗传过程。GA通过以下步骤迭代地搜索最优解: - **初始化:**随机生成一个种群,每个个体代表一个潜在的解决方案。 - **选择:**根据个体的适应度(目标函数值)选择适合繁殖的个体。 - **交叉:**将选定的个体配对并交换基因,产生新的个体。 - **
recommend-type

File path = new File(ResourceUtils.getURL("classpath:static").getPath());

这段代码的作用是获取项目中静态资源文件夹的路径,其中`ResourceUtils.getURL("classpath:static")`表示获取`classpath`下的`static`文件夹的URL,`getPath()`方法则将URL转换成文件路径。最终得到的`File`对象可以用于读取或写入静态资源文件。需要注意的是,这段代码只适用于Spring Boot项目,因为它使用了Spring的`ResourceUtils`类。如果不是Spring Boot项目,可能需要使用其他方式获取静态资源文件夹的路径。