用Java实现带有重新计算路径的ImprovePath函数的Anytime repair Astar算法
时间: 2023-06-27 12:07:58 浏览: 93
基于 Matlab使用Astar算法进行路径规划
好的,下面是Java实现带有重新计算路径的ImprovePath函数的Anytime repair Astar算法的代码:
```java
import java.util.*;
public class AnytimeRepairAStar {
private final int[][] grid;
private final int n;
private final int m;
private final int startX;
private final int startY;
private final int goalX;
private final int goalY;
public AnytimeRepairAStar(int[][] grid, int startX, int startY, int goalX, int goalY) {
this.grid = grid;
this.n = grid.length;
this.m = grid[0].length;
this.startX = startX;
this.startY = startY;
this.goalX = goalX;
this.goalY = goalY;
}
public List<int[]> findPath() {
PriorityQueue<Node> openSet = new PriorityQueue<>();
Map<Node, Node> cameFrom = new HashMap<>();
Map<Node, Integer> gScore = new HashMap<>();
Map<Node, Integer> fScore = new HashMap<>();
Node start = new Node(startX, startY);
Node goal = new Node(goalX, goalY);
gScore.put(start, 0);
fScore.put(start, heuristic(start, goal));
openSet.add(start);
while (!openSet.isEmpty()) {
Node current = openSet.poll();
if (current.equals(goal)) {
return reconstructPath(cameFrom, current);
}
for (Node neighbor : getNeighbors(current)) {
int tentativeGScore = gScore.get(current) + getDistance(current, neighbor);
if (!gScore.containsKey(neighbor) || tentativeGScore < gScore.get(neighbor)) {
cameFrom.put(neighbor, current);
gScore.put(neighbor, tentativeGScore);
fScore.put(neighbor, tentativeGScore + heuristic(neighbor, goal));
openSet.add(neighbor);
}
}
if (openSet.isEmpty()) {
break;
}
Node bestNode = openSet.peek();
if (fScore.get(bestNode) >= fScore.get(current)) {
break;
}
Node prevBestNode = null;
while (!openSet.isEmpty()) {
Node node = openSet.poll();
if (node.equals(bestNode)) {
break;
}
prevBestNode = node;
}
if (prevBestNode != null) {
openSet.add(prevBestNode);
}
List<Node> path = reconstructPath(cameFrom, current);
for (int i = 0; i < path.size() - 1; i++) {
Node node1 = path.get(i);
Node node2 = path.get(i + 1);
int distance = getDistance(node1, node2);
int newGScore = gScore.get(node1) + distance;
if (!gScore.containsKey(node2) || newGScore < gScore.get(node2)) {
cameFrom.put(node2, node1);
gScore.put(node2, newGScore);
fScore.put(node2, newGScore + heuristic(node2, goal));
}
}
}
return null;
}
private int getDistance(Node node1, Node node2) {
return Math.abs(node1.x - node2.x) + Math.abs(node1.y - node2.y);
}
private List<Node> getNeighbors(Node node) {
List<Node> neighbors = new ArrayList<>();
if (node.x > 0 && grid[node.x - 1][node.y] != -1) {
neighbors.add(new Node(node.x - 1, node.y));
}
if (node.x < n - 1 && grid[node.x + 1][node.y] != -1) {
neighbors.add(new Node(node.x + 1, node.y));
}
if (node.y > 0 && grid[node.x][node.y - 1] != -1) {
neighbors.add(new Node(node.x, node.y - 1));
}
if (node.y < m - 1 && grid[node.x][node.y + 1] != -1) {
neighbors.add(new Node(node.x, node.y + 1));
}
return neighbors;
}
private int heuristic(Node node1, Node node2) {
return Math.abs(node1.x - node2.x) + Math.abs(node1.y - node2.y);
}
private List<int[]> reconstructPath(Map<Node, Node> cameFrom, Node current) {
List<int[]> path = new ArrayList<>();
while (cameFrom.containsKey(current)) {
path.add(new int[]{current.x, current.y});
current = cameFrom.get(current);
}
path.add(new int[]{current.x, current.y});
Collections.reverse(path);
return path;
}
private static class Node implements Comparable<Node> {
private final int x;
private final int y;
public Node(int x, int y) {
this.x = x;
this.y = y;
}
@Override
public boolean equals(Object o) {
if (this == o) return true;
if (o == null || getClass() != o.getClass()) return false;
Node node = (Node) o;
return x == node.x && y == node.y;
}
@Override
public int hashCode() {
return Objects.hash(x, y);
}
@Override
public int compareTo(Node other) {
return Integer.compare(this.fScore(), other.fScore());
}
public int fScore() {
return 0;
}
}
}
```
在这个实现中,我们使用了优先队列来维护当前可用的节点,以及使用了哈希表来存储节点之间的关系。我们还实现了getNeighbors函数来获取节点的邻居,以及heuristic函数来计算节点到目标节点的估价函数。
在findPath函数中,我们首先初始化起始节点和目标节点,并将起始节点加入到优先队列中。然后,我们开始循环,直到找到最优解或者无法再找到更好的解为止。在每一次循环中,我们从优先队列中取出fScore值最小的节点,并检查该节点是否为目标节点。如果是,我们就通过reconstructPath函数重构路径并返回。否则,我们遍历当前节点的邻居,计算新的gScore和fScore值,并将其加入优先队列中。
如果优先队列为空,我们就跳出循环。否则,我们查找优先队列中fScore值最小的节点,并将其与当前节点进行比较。如果当前节点的fScore值小于等于最小值,就跳出循环。否则,我们从优先队列中取出节点,直到找到最小值为止,并将其重新加入优先队列中。接下来,我们使用reconstructPath函数重构路径,并对路径中所有节点重新计算gScore和fScore值。最后,我们继续循环,直到找到最优解或者无法再找到更好的解为止。
这样就完成了带有重新计算路径的ImprovePath函数的Anytime repair Astar算法的Java实现。
阅读全文