<launch> <!-- 设置launch文件的参数 --> <arg name="world_name" value="$(find mrobot_gazebo)/worlds/cloister.world"/> <arg name="paused" default="false"/> <arg name="use_sim_time" default="true"/> <arg name="gui" default="true"/> <arg name="headless" default="false"/> <arg name="debug" default="false"/> <!-- 运行gazebo仿真环境 --> <include file="$(find gazebo_ros)/launch/empty_world.launch"> <arg name="world_name" value="$(arg world_name)" /> <arg name="debug" value="$(arg debug)" /> <arg name="gui" value="$(arg gui)" /> <arg name="paused" value="$(arg paused)"/> <arg name="use_sim_time" value="$(arg use_sim_time)"/> <arg name="headless" value="$(arg headless)"/> </include> <!-- 加载机器人模型描述参数 --> <param name="robot_description" command="$(find xacro)/xacro --inorder '$(find mrobot_gazebo)/urdf/mrobot_with_rplidar.urdf.xacro'" /> <!-- 运行joint_state_publisher节点,发布机器人的关节状态 --> <node name="joint_state_publisher" pkg="joint_state_publisher" type="joint_state_publisher" ></node> <!-- 运行robot_state_publisher节点,发布tf --> <node name="robot_state_publisher" pkg="robot_state_publisher" type="robot_state_publisher" output="screen" > <param name="publish_frequency" type="double" value="50.0" /> </node> <!-- 在gazebo中加载机器人模型--> <node name="urdf_spawner" pkg="gazebo_ros" type="spawn_model" respawn="false" output="screen" args="-urdf -model mrobot -param robot_description"/> </launch>
时间: 2023-07-19 08:37:39 浏览: 304
这是一个ROS的launch文件,用于启动Gazebo仿真环境,并加载机器人模型。其中,包含了以下几个节点:
1. empty_world.launch:通过该节点运行Gazebo仿真环境。
2. joint_state_publisher:用于发布机器人的关节状态。
3. robot_state_publisher:用于发布机器人的tf信息。
4. urdf_spawner:在Gazebo中加载机器人模型。
此外,该launch文件还定义了一些参数,如world_name、paused、use_sim_time等,可以通过修改这些参数来控制仿真环境的运行。
相关问题
分析这段代码的作用:<launch> <!-- set to value="gdbserver localhost:10000" for remote debugging --> <arg name="launch_prefix" default="" /> <!-- configure camera input --> <arg name="camera_name" default="mynteye" /> <arg name="image_topic" default="image_rect" /> <arg name="queue_size" default="1" /> <arg name="svo_file" default="" /> <!-- <arg name="svo_file" default="path/to/svo/file.svo"> --> <arg name="stream" default="" /> <!-- <arg name="stream" default="<ip_address>:<port>"> --> <!-- 相机名称 --> <arg name="camera_model" default="mynteye" /> <!-- 已经启动了所有的mynteye节点 --> <include file="$(find mynteye_wrapper_d)/launch/mynteye.launch"/> <!-- <node pkg="apriltag_ros" type="undersort_image_node" output="screen"> --> <node name="rviz" pkg="rviz" type="rviz" args="-d $(find mynteye_wrapper_d)/rviz/mynteye_withTags.rviz" output="screen"/> <!-- apriltag_ros continuous detection node --> <node pkg="apriltag_ros" type="apriltag_ros_continuous_node" name="apriltag_ros_continuous_node" clear_params="true" output="screen" launch-prefix="$(arg launch_prefix)"> <!-- Remap topics from those used in code to those on the ROS network --> <!-- 相机节点 --> <remap from="image_rect" to="/undistorted_image"/> <!-- <remap from="image_rect" to="//mynteye/left/image_color"/> --> <remap from="camera_info" to="/mynteye/left/camera_info" /> <param name="publish_tag_detections_image" type="bool" value="true" /><!-- default: false --> <param name="queue_size" type="int" value="$(arg queue_size)" /> <!-- load parameters (incl. tag family, tags, etc.) --> <rosparam command="load" file="$(find apriltag_ros)/config/settings.yaml"/> <rosparam command="load" file="$(find apriltag_ros)/config/tags.yaml"/> </node> </launch>
这是一个 ROS Launch 文件,用于启动一个包含 Mynteye 相机和 AprilTags 检测节点的 ROS 节点组。具体来说,这个文件做了以下几件事情:
1. 设置了一个名为 `launch_prefix` 的参数,用于在启动节点时添加前缀命令,比如 `gdbserver localhost:10000` 用于远程调试。
2. 设置了一些相机相关的参数,包括相机名称、图像话题、队列大小等。
3. 包含了 `mynteye.launch` 文件,启动了 Mynteye 相机的 ROS 节点。
4. 启动了一个 RViz 节点,用于可视化相机图像和 AprilTags 检测结果。
5. 启动了一个 `apriltag_ros_continuous_node` 节点,用于连续地检测相机图像中的 AprilTags。这个节点通过 `remap` 将相机节点发布的图像话题和相机信息话题映射到自己的输入话题,加载了一些参数文件,包括 AprilTags 的配置和标签信息,以及一些参数,如队列大小和是否发布检测结果图像等。
<launch> <node pkg="tf" type="static_transform_publisher" name="odom_to_map" args="0.0 0.0 0 0.0 0.0 0.0 /odom /map 40" /> <!-- Arguments --> <arg name="motion_planning" default="/home/ijun/XTDrone/motion_planning/2d/"/> <arg name="move_forward_only" default="false"/> <arg name="open_rviz" default="true"/> <!-- Map server --> <node pkg="map_server" name="map_server" type="map_server" args="$(arg motion_planning)/map/indoor3.yaml"/> <!-- move_base --> <include file="$(arg motion_planning)/launch/move_base.launch"> <arg name="motion_planning" value="$(arg motion_planning)"/> <arg name="move_forward_only" value="$(arg move_forward_only)"/> <arg name="cmd_vel_topic" default="/xtdrone/iris_0/cmd_vel_flu" /> <arg name="odom_topic" default="/iris_0/mavros/local_position/odom" /> </include> <!-- rviz --> <group if="$(arg open_rviz)"> <node pkg="rviz" type="rviz" name="rviz" required="true" args="-d $(arg motion_planning)/rviz/2d_motion_planning.rviz"/> </group> </launch>
这个launch文件主要包含一些ROS节点的启动和参数配置,用于在机器人上运行2D运动规划算法。具体来说:
1. 首先,一个名为`odom_to_map`的tf静态变换节点被启动,用于将机器人的odom坐标系转换为map坐标系。
2. 接下来,通过指定`motion_planning`参数,启动了一个名为`map_server`的map_server节点,用于加载机器人所在环境的地图文件。
3. 然后,通过包含`move_base.launch`文件,启动了一个名为`move_base`的move_base节点,用于生成可行的运动轨迹,并将其转换为机器人能够执行的速度命令。
4. 最后,如果`open_rviz`参数设置为`true`,则启动一个名为`rviz`的rviz节点,用于可视化运动规划的结果。
如果你想了解更多关于这个launch文件的细节或者其中涉及到的ROS节点的具体作用,请提供更多的上下文信息,我会尽力帮助你。
阅读全文
相关推荐

















