请给出图像self-attention代码示例
时间: 2023-09-13 13:05:35 浏览: 100
### 回答1:
self-attention代码示例:import torch
from torch import nnclass SelfAttention(nn.Module):
def __init__(self, dim):
super().__init__()
self.linear_in = nn.Linear(dim, dim, bias=False)
self.sm = nn.Softmax(dim=-1)
self.linear_out = nn.Linear(dim, dim, bias=False)
def forward(self, input):
x = self.linear_in(input)
x = self.sm(x)
x = self.linear_out(x)
return x
### 回答2:
以下是一个使用PyTorch实现图像self-attention的代码示例:
```python
import torch
import torch.nn as nn
class SelfAttention(nn.Module):
def __init__(self, in_channels):
super(SelfAttention, self).__init__()
# 定义3个卷积层
self.query_conv = nn.Conv2d(in_channels, in_channels // 8, kernel_size=1)
self.key_conv = nn.Conv2d(in_channels, in_channels // 8, kernel_size=1)
self.value_conv = nn.Conv2d(in_channels, in_channels, kernel_size=1)
# 定义softmax层
self.softmax = nn.Softmax(dim=-1)
# 定义缩放因子
self.gamma = nn.Parameter(torch.zeros(1))
def forward(self, x):
# 获取输入的大小
b, c, h, w = x.size()
# 使用query_conv,key_conv和value_conv计算Q,K和V
query = self.query_conv(x).view(b, -1, h * w)
key = self.key_conv(x).view(b, -1, h * w)
value = self.value_conv(x).view(b, -1, h * w)
# 计算attention分数
attention_scores = torch.bmm(query.permute(0, 2, 1), key)
attention_scores = self.softmax(attention_scores)
# 计算注意力加权的value
attention_output = torch.bmm(value, attention_scores.permute(0, 2, 1))
attention_output = attention_output.view(b, c, h, w)
# 对注意力加权的value进行缩放和残差连接
out = self.gamma * attention_output + x
return out
# 使用示例
in_channels = 256
input_size = (3, 224, 224)
x = torch.rand((1, in_channels, input_size[1], input_size[2]))
# 创建self-attention层
self_attention = SelfAttention(in_channels)
# 运行forward函数
output = self_attention(x)
print(output.size()) # 输出: torch.Size([1, 256, 224, 224])
```
这个示例代码演示了如何使用卷积层构建图像self-attention层,并用于处理大小为`(1, 256, 224, 224)`的输入。在代码中,先定义了3个卷积层(query_conv、key_conv和value_conv),之后将输入大小调整为适合进行计算的形状,接下来计算Q、K和V。然后,根据Q和K的点积计算attention分数,并使用softmax函数对其进行归一化。最后,根据注意力加权的V计算输出,并通过缩放因子和残差连接进行处理。
阅读全文