给定5个线段的端点坐标,能够组成几个封闭图形,用C++代码实现
时间: 2024-04-11 07:28:46 浏览: 92
下面是一个用于计算给定5个线段能够组成多少个封闭图形的C++代码示例:
```cpp
#include <iostream>
#include <vector>
#include <algorithm>
struct Point {
double x, y;
};
struct LineSegment {
Point start, end;
};
bool areSegmentsIntersecting(LineSegment segment1, LineSegment segment2) {
double x1 = segment1.start.x;
double y1 = segment1.start.y;
double x2 = segment1.end.x;
double y2 = segment1.end.y;
double x3 = segment2.start.x;
double y3 = segment2.start.y;
double x4 = segment2.end.x;
double y4 = segment2.end.y;
double dx1 = x2 - x1;
double dy1 = y2 - y1;
double dx2 = x4 - x3;
double dy2 = y4 - y3;
double denominator = dx1 * dy2 - dx2 * dy1;
if (denominator == 0) {
return false; // 线段平行或共线
}
double t1 = ((x3 - x1) * dy2 + (x1 - x2) * dy1) / denominator;
double t2 = ((y1 - y3) * dx2 + (x3 - x4) * dy2) / denominator;
if (t1 >= 0 && t1 <= 1 && t2 >= 0 && t2 <= 1) {
return true; // 线段相交
}
return false; // 线段不相交
}
int countClosedShapes(std::vector<LineSegment> segments) {
int count = 0;
int n = segments.size();
for (int i = 0; i < n; i++) {
bool isClosed = true;
for (int j = 0; j < n; j++) {
if (i == j) {
continue;
}
if (areSegmentsIntersecting(segments[i], segments[j])) {
isClosed = false;
break;
}
}
if (isClosed) {
count++;
}
}
return count;
}
int main() {
std::vector<LineSegment> segments;
// 假设已知的5个线段的端点坐标为:
Point a = {0, 0};
Point b = {1, 1};
Point c = {1, 1};
Point d = {2, 2};
Point e = {2, 2};
Point f = {3, 3};
Point g = {3, 3};
Point h = {4, 4};
LineSegment segment1 = {a, b};
LineSegment segment2 = {c, d};
LineSegment segment3 = {e, f};
LineSegment segment4 = {g, h};
LineSegment segment5 = {a, h};
segments.push_back(segment1);
segments.push_back(segment2);
segments.push_back(segment3);
segments.push_back(segment4);
segments.push_back(segment5);
int closedShapesCount = countClosedShapes(segments);
std::cout << "Number of closed shapes: " << closedShapesCount << std::endl;
return 0;
}
```
在上述代码中,我们首先定义了 `Point` 和 `LineSegment` 的结构体,分别表示点和线段。然后,我们实现了 `areSegmentsIntersecting` 函数来判断两条线段是否相交。接下来,我们使用 `countClosedShapes` 函数来计算给定线段能够组成的封闭图形数量。最后,在 `main` 函数中,我们定义了5个线段的端点坐标,并将其传递给 `countClosedShapes` 函数来得到结果。
运行代码后,会输出给定线段能够组成的封闭图形的数量。
阅读全文