model.add(Input(shape=(X_train.shape[1], X_train.shape[2]*5)))修改该代码,解决 ValueError: Input 0 of layer "sequential_76" is incompatible with the layer: expected shape=(None, 10, 5), found shape=(None, 10, 1, 1, 5)问题
时间: 2024-01-30 17:03:49 浏览: 124
根据报错信息,我们可以看到原本预期的输入形状是 `(None, 10, 5)`,但实际输入的形状是 `(None, 10, 1, 1, 5)`,多了两个维度。因此,我们需要将多余的维度去掉,可以使用 `np.squeeze()` 函数来实现。
修改后的代码如下:
```python
model.add(Input(shape=np.squeeze((X_train.shape[1], X_train.shape[2]*5)))))
```
这样就可以将输入形状变为预期的 `(None, 10, 5)`。
相关问题
from keras.datasets import mnist vae = Model(input_img, y) vae.compile(optimizer='rmsprop', loss=None) vae.summary() (x_train, _), (x_test, y_test) = mnist.load_data() x_train = x_train.astype('float32') / 255. x_train = x_train.reshape(x_train.shape + (1,)) x_test = x_test.astype('float32') / 255. x_test = x_test.reshape(x_test.shape + (1,)) vae.fit(x=x_train, y=None, shuffle=True, epochs=10, batch_size=batch_size, validation_data=(x_test, None))
这段代码缺少定义`input_img`和`y`的语句。在VAE模型中,通常使用编码器和解码器两个部分来实现。编码器将输入图片压缩到一个低维潜在空间中,解码器则将潜在空间向量转换回图像。
因此,需要定义输入层`input_img`和输出层`y`。可以按照以下方式定义:
```python
input_img = Input(shape=(28, 28, 1))
# 编码器
x = Conv2D(32, (3, 3), activation='relu', padding='same')(input_img)
x = MaxPooling2D((2, 2), padding='same')(x)
x = Conv2D(64, (3, 3), activation='relu', padding='same')(x)
x = MaxPooling2D((2, 2), padding='same')(x)
x = Conv2D(128, (3, 3), activation='relu', padding='same')(x)
x = MaxPooling2D((2, 2), padding='same')(x)
x = Conv2D(latent_dim, (3, 3), activation='relu', padding='same')(x)
# 潜在空间采样
z_mean = Flatten()(x)
z_log_var = Flatten()(x)
z = Lambda(sampling)([z_mean, z_log_var])
# 解码器
decoder_input = Input(K.int_shape(z)[1:])
x = Reshape((7, 7, 16))(decoder_input)
x = Conv2DTranspose(128, (3, 3), activation='relu', padding='same')(x)
x = UpSampling2D((2, 2))(x)
x = Conv2DTranspose(64, (3, 3), activation='relu', padding='same')(x)
x = UpSampling2D((2, 2))(x)
x = Conv2DTranspose(32, (3, 3), activation='relu', padding='same')(x)
x = UpSampling2D((2, 2))(x)
x = Conv2DTranspose(1, (3, 3), activation='sigmoid', padding='same')(x)
decoder = Model(decoder_input, x)
# 完整的 VAE 模型
outputs = decoder(z)
vae = Model(input_img, outputs)
# 定义损失函数
reconstruction_loss = binary_crossentropy(K.flatten(input_img), K.flatten(outputs))
reconstruction_loss *= img_rows * img_cols
kl_loss = 1 + z_log_var - K.square(z_mean) - K.exp(z_log_var)
kl_loss = K.sum(kl_loss, axis=-1)
kl_loss *= -0.5
vae_loss = K.mean(reconstruction_loss + kl_loss)
vae.add_loss(vae_loss)
# 编译模型
vae.compile(optimizer='rmsprop')
```
这里的`latent_dim`是潜在空间的维度,`sampling`是一个自定义的采样函数,用来从潜在空间中采样。同时,定义了一个解码器`decoder`,用于将潜在空间向量转换为图像。最后,使用`vae.add_loss()`来定义整个VAE模型的损失函数。
希望这可以帮助你解决问题!
def train_lstm(n_symbols,embedding_weights,x_train,y_train,x_test,y_test): print ('Defining a Simple Keras Model...') model = Sequential() # or Graph or whatever model.add(Embedding(output_dim=vocab_dim, input_dim=n_symbols, mask_zero=True, weights=[embedding_weights], input_length=input_length)) # Adding Input Length model.add(LSTM(output_dim=50, activation='tanh', inner_activation='hard_sigmoid')) model.add(Dropout(0.5)) model.add(Dense(3, activation='softmax')) # Dense=>全连接层,输出维度=1 model.add(Activation('softmax')) print ('Compiling the Model...') model.compile(loss='categorical_crossentropy', optimizer='adam',metrics=['accuracy']) print ("Train...") # batch_size=32 model.fit(x_train, y_train, batch_size=batch_size, epochs=n_epoch,verbose=1) print ("Evaluate...") score = model.evaluate(x_test, y_test, batch_size=batch_size) yaml_string = model.to_yaml() with open('../model/lstm.yml', 'w') as outfile: outfile.write( yaml.dump(yaml_string, default_flow_style=True) ) model.save_weights('../model/lstm.h5') print ('Test score:', score) print ('Setting up Arrays for Keras Embedding Layer...') n_symbols,embedding_weights,x_train,y_train,x_test,y_test=get_data(index_dict, word_vectors,combined,y) print ("x_train.shape and y_train.shape:") print x_train.shape,y_train.shape train_lstm(n_symbols,embedding_weights,x_train,y_train,x_test,y_test)
这段代码定义了一个名为train_lstm的函数,用于训练一个LSTM模型并保存模型。这个函数包含六个参数,前三个参数n_symbols、embedding_weights和input_length是用于构建Embedding层的参数;后三个参数x_train、y_train和x_test、y_test是用于训练和评估模型的数据集。
具体来说,这个函数的操作包括:
1. 构建一个Sequential模型。
2. 向模型中添加一个Embedding层,使用预训练的词向量作为初始权重,并将输入长度设置为input_length。
3. 向模型中添加一个LSTM层,输出维度为50,激活函数为tanh,内部激活函数为hard_sigmoid。
4. 向模型中添加一个Dropout层,丢弃率为0.5。
5. 向模型中添加一个Dense层,输出维度为3,激活函数为softmax。
6. 编译模型,使用categorical_crossentropy作为损失函数,使用adam作为优化器,评估指标为准确率。
7. 训练模型,使用batch_size=32,训练轮数为n_epoch。
8. 评估模型,计算模型在测试集上的损失和准确率。
9. 将模型的结构保存为YAML文件,将模型的权重保存为HDF5文件。
在函数中,还调用了get_data函数,用于获取训练和测试集。最后,函数输出了模型在测试集上的损失和准确率。
需要注意的是,这段代码中有一些打印语句(print语句),如果你使用的是Python 3,需要将print语句改为print函数的调用形式,即在print后面加上一对括号。同时,这段代码中使用了一些未定义的变量(如vocab_dim、batch_size和n_epoch),你需要在调用train_lstm函数之前先定义这些变量。
阅读全文