d.wait_timeout = 10弃用

时间: 2024-01-26 12:27:07 浏览: 18
很抱歉,我之前的回答有误。确实,uiautomator2不再支持直接设置全局等待超时时间(`d.wait_timeout`)。 要设置等待超时时间,您可以使用`exists`、`wait`或`wait_gone`等方法的`timeout`参数来指定等待时间。例如: ```python from uiautomator2 import Session # 创建一个uiautomator2会话 d = Session() # 查找元素,并设置等待超时时间为10秒 element = d(text="按钮").wait(timeout=10) ``` 在上述代码中,`wait(timeout=10)`方法将在等待最多10秒后返回元素对象。 请注意,每个等待操作都需要显式指定等待超时时间,而不是像之前版本中的全局设置。 非常抱歉给您带来的困扰,谢谢您的指正!如果您有其他问题,请随时提问。
相关问题

def calCrowdcarCost(crowd_route_list, model): cost_of_distance = 0 crowd_wait_time = 0 model.crowdcarcost = 0 for route in crowd_route_list: timetable = [] for i in range(len(route)): if i == 0: depot_id = route[i] next_node_id = route[i+1] cost_of_distance = model.distance_matrix[depot_id, next_node_id] travel_time = int(model.distance_matrix[depot_id, next_node_id]) departure = max(0, model.demand_dict[next_node_id].start_time - travel_time) if departure == 0: crowd_wait_time = travel_time - model.demand_dict[next_node_id].start_time timetable.append((departure, departure)) elif 1 <= i <= len(route)-2: last_node_id = route[i-1] current_node_id = route[i] current_node = model.demand_dict[current_node_id] travel_time = int(model.distance_matrix[last_node_id, current_node_id]) cost_of_distance += model.distance_matrix[last_node_id, current_node_id] arrival = max(timetable[-1][1]+travel_time, current_node.start_time) if arrival == timetable[-1][1]+travel_time: crowd_wait_time += timetable[-1][1]+travel_time - current_node.start_time else: break model.crowdcarcost += model.fixcost + model.percost * cost_of_distance return model.crowdcarcost, crowd_wait_time 在这一段代码中我想知道每个点的等待时间总和,等待时间等于到达这个的时间减去它的时间窗上限

在这段代码中,你已经计算了每个点的等待时间,它们被累加到了`crowd_wait_time`变量中。如果你想得到每个点的等待时间总和,可以在循环中添加一个变量来记录。以下是修改后的代码: ```python def calCrowdcarCost(crowd_route_list, model): cost_of_distance = 0 crowd_wait_time = 0 point_wait_time = {} # 记录每个点的等待时间 model.crowdcarcost = 0 for route in crowd_route_list: timetable = [] for i in range(len(route)): if i == 0: depot_id = route[i] next_node_id = route[i+1] cost_of_distance = model.distance_matrix[depot_id, next_node_id] travel_time = int(model.distance_matrix[depot_id, next_node_id]) departure = max(0, model.demand_dict[next_node_id].start_time - travel_time) if departure == 0: crowd_wait_time = travel_time - model.demand_dict[next_node_id].start_time point_wait_time[next_node_id] = travel_time - model.demand_dict[next_node_id].start_time timetable.append((departure, departure)) elif 1 <= i <= len(route)-2: last_node_id = route[i-1] current_node_id = route[i] current_node = model.demand_dict[current_node_id] travel_time = int(model.distance_matrix[last_node_id, current_node_id]) cost_of_distance += model.distance_matrix[last_node_id, current_node_id] arrival = max(timetable[-1][1]+travel_time, current_node.start_time) if arrival == timetable[-1][1]+travel_time: wait_time = timetable[-1][1]+travel_time - current_node.start_time crowd_wait_time += wait_time point_wait_time[current_node_id] = wait_time else: break model.crowdcarcost += model.fixcost + model.percost * cost_of_distance return model.crowdcarcost, crowd_wait_time, point_wait_time ``` 这样,`point_wait_time`字典中的每个键值对代表一个点的等待时间,其中键为点的ID,值为该点的等待时间。

void HRRN(fcfs *p, int N) { int i, j; double rr[N], sum_wait = 0.0, sum_turn = 0.0; //计算每个进程的响应比 for (i = 0; i < N; i++) { rr[i] = 1.0 + (double)p[i].wait_time / (double)p[i].burst_time; } //按照响应比排序 for (i = 0; i < N - 1; i++) { for (j = i + 1; j < N; j++) { if (rr[j] > rr[i]) { swap_FCFS(&p[i], &p[j]); swap_double(&rr[i], &rr[j]); } } } //计算等待时间和周转时间 p[0].start_time = 0; for (i = 0; i < N; i++) { if (p[i].start_time < p[i].arrival_time) { p[i].wait_time = p[i].arrival_time - p[i].start_time; p[i].start_time = p[i].arrival_time; } sum_wait += (double)p[i].wait_time; p[i].turn_time = p[i].start_time + p[i].burst_time; sum_turn += (double)p[i].turn_time; } //打印结果 printf("\n"); printf("进程\t 到达时间\t 服务时间\t 开始时间\t 等待时间\t 周转时间\n"); for (i = 0; i < N; i++) { printf("P%d\t %d\t\t %d\t\t %d\t\t %d\t\t %d\n", p[i].pid, p[i].arrival_time, p[i].burst_time, p[i].start_time, p[i].wait_time, p[i].turn_time); } printf("平均等待时间:%.2f\n", sum_wait / N); printf("平均周转时间:%.2f\n", sum_turn / N); }添加最高响应级优先算法

好的,下面是添加最高响应比优先算法的代码: ``` void HRRN(fcfs *p, int N) { int i, j; double rr[N], sum_wait = 0.0, sum_turn = 0.0; //计算每个进程的响应比 for (i = 0; i < N; i++) { rr[i] = 1.0 + (double)p[i].wait_time / (double)p[i].burst_time; } //按照响应比排序 for (i = 0; i < N - 1; i++) { for (j = i + 1; j < N; j++) { if (rr[j] > rr[i]) { swap_FCFS(&p[i], &p[j]); swap_double(&rr[i], &rr[j]); } } } //计算等待时间和周转时间 p[0].start_time = 0; for (i = 0; i < N; i++) { if (p[i].start_time < p[i].arrival_time) { p[i].wait_time = p[i].arrival_time - p[i].start_time; p[i].start_time = p[i].arrival_time; } sum_wait += (double)p[i].wait_time; p[i].turn_time = p[i].start_time + p[i].burst_time; sum_turn += (double)p[i].turn_time; } //打印结果 printf("\n"); printf("进程\t 到达时间\t 服务时间\t 开始时间\t 等待时间\t 周转时间\n"); for (i = 0; i < N; i++) { printf("P%d\t %d\t\t %d\t\t %d\t\t %d\t\t %d\n", p[i].pid, p[i].arrival_time, p[i].burst_time, p[i].start_time, p[i].wait_time, p[i].turn_time); } printf("平均等待时间:%.2f\n", sum_wait / N); printf("平均周转时间:%.2f\n", sum_turn / N); } void HRRN_priority(fcfs *p, int N) { int i, j; double rr[N], sum_wait = 0.0, sum_turn = 0.0; //计算每个进程的响应比和优先级 for (i = 0; i < N; i++) { rr[i] = 1.0 + (double)p[i].wait_time / (double)p[i].burst_time; p[i].priority = (int)(rr[i] * 100 + 0.5); //取整 } //按照优先级排序 for (i = 0; i < N - 1; i++) { for (j = i + 1; j < N; j++) { if (p[j].priority > p[i].priority) { swap_FCFS(&p[i], &p[j]); swap_double(&rr[i], &rr[j]); } } } //计算等待时间和周转时间 p[0].start_time = 0; for (i = 0; i < N; i++) { if (p[i].start_time < p[i].arrival_time) { p[i].wait_time = p[i].arrival_time - p[i].start_time; p[i].start_time = p[i].arrival_time; } sum_wait += (double)p[i].wait_time; p[i].turn_time = p[i].start_time + p[i].burst_time; sum_turn += (double)p[i].turn_time; } //打印结果 printf("\n"); printf("进程\t 到达时间\t 服务时间\t 开始时间\t 等待时间\t 周转时间\t 优先级\n"); for (i = 0; i < N; i++) { printf("P%d\t %d\t\t %d\t\t %d\t\t %d\t\t %d\t\t %d\n", p[i].pid, p[i].arrival_time, p[i].burst_time, p[i].start_time, p[i].wait_time, p[i].turn_time, p[i].priority); } printf("平均等待时间:%.2f\n", sum_wait / N); printf("平均周转时间:%.2f\n", sum_turn / N); } ``` 其中,`HRRN()` 函数是原来的按照响应比排序的函数,`HRRN_priority()` 函数是添加了优先级计算和按照优先级排序的函数。在 `HRRN_priority()` 函数中,我们计算出每个进程的优先级,然后按照优先级从高到低排序。最后再计算等待时间和周转时间,并打印结果。 需要注意的是,在计算优先级时,我们将响应比乘以了 100 并取整,以便将其转换为整数类型的优先级值。

相关推荐

class Process: def __init__(self, pid, arrival_time, burst_time): self.pid = pid self.arrival_time = arrival_time self.burst_time = burst_time self.waiting_time = 0 self.turnaround_time = 0 self.response_ratio = 0 self.start_time = 0 self.complete_time = 0 def hrrn(processes): n = len(processes) current_time = 0 completed_processes = [] while len(completed_processes) < n: # 计算每个进程的响应比 for p in processes: if p not in completed_processes: waiting_time = current_time - p.arrival_time p.response_ratio = 1 + waiting_time / p.burst_time # 选择响应比最大的进程执行 selected_process = max(processes, key=lambda x: x.response_ratio) selected_process.start_time = current_time selected_process.complete_time = current_time + selected_process.burst_time selected_process.turnaround_time = selected_process.complete_time - selected_process.arrival_time current_time = selected_process.complete_time completed_processes.append(selected_process) return completed_processes # 创建进程列表 processes = [ Process(1, 0, 10), Process(2, 1, 5), Process(3, 2, 8), Process(4, 3, 6), ] # 运行调度算法 completed_processes = hrrn(processes) # 输出结果 total_wait_time = sum([p.waiting_time for p in completed_processes]) total_turnaround_time = sum([p.turnaround_time for p in completed_processes]) total_weighted_turnaround_time = sum([p.turnaround_time / p.burst_time for p in completed_processes]) for p in completed_processes: print( f"Process {p.pid}:到达时间 {p.arrival_time},所需执行时间{p.burst_time},开始时间{p.start_time},结束时间 {p.complete_time},周转时间 {p.turnaround_time},带权周转时间 {p.turnaround_time / p.burst_time:.2f}") print(f"平均周转时间:{total_turnaround_time / len(completed_processes):.2f}") print(f"平均带权周转时间:{total_weighted_turnaround_time / len(completed_processes):.2f}") 解释这段代码的设计思路

这段代码运行结果是什么:#include <iostream> #include <vector> #include <queue> using namespace std; struct Process { int id; // 进程ID int arrival_time; // 到达时间 int execution_time; // 执行时间 int start_time; // 开始执行时间 int end_time; // 结束执行时间 }; int main() { int n = 15; // 进程数量 int time_slice = 1; // 时间片长度 int current_time = 0; // 当前时间 int total_execution_time = 0; // 总执行时间 int total_wait_time = 0; // 总等待时间 queue ready_queue; // 就绪队列 // 生成进程 vector processes(n); for (int i = 0; i < n; i++) { processes[i].id = i + 1; processes[i].arrival_time = rand() % 10; processes[i].execution_time = rand() % 10 + 1; total_execution_time += processes[i].execution_time; } // 模拟轮转算法进行进程调度 while (!ready_queue.empty() || current_time < total_execution_time) { // 将到达时间小于等于当前时间的进程加入就绪队列 for (int i = 0; i < n; i++) { if (processes[i].arrival_time <= current_time && processes[i].execution_time > 0) { ready_queue.push(processes[i]); processes[i].start_time = -1; // 标记为已加入队列 } } // 从就绪队列中选取一个进程执行 if (!ready_queue.empty()) { Process p = ready_queue.front(); ready_queue.pop(); if (p.start_time == -1) { p.start_time = current_time; } if (p.execution_time > time_slice) { current_time += time_slice; p.execution_time -= time_slice; ready_queue.push(p); } else { current_time += p.execution_time; p.execution_time = 0; p.end_time = current_time; total_wait_time += p.start_time - p.arrival_time; cout << "Process " << p.id << ": arrival time = " << p.arrival_time << ", execution time = " << p.execution_time << ", start time = " << p.start_time << ", end time = " << p.end_time << endl; } } } // 输出平均等待时间 double average_wait_time = (double)total_wait_time / n; cout << "Average wait time = " << average_wait_time << endl; return 0; }

class Process: def init(self, pid, arrival_time, burst_time): self.pid = pid #进程id self.arrival_time = arrival_time #到达时间 self.burst_time = burst_time #执行时间 self.waiting_time = 0 #等待时间 self.turnaround_time = 0 #周转时间 self.response_ratio = 0 #响应比 self.start_time = 0 #开始时间 self.complete_time = 0 #结束时间 def hrrn(processes): n = len(processes) current_time = 0 completed_processes = [] while len(completed_processes) < n: # 计算每个进程的响应比 for p in processes: if p not in completed_processes: waiting_time = current_time - p.arrival_time p.response_ratio = 1 + waiting_time / p.burst_time #响应比=1+作业等待时间/估计运行时间 # 选择响应比最大的进程执行 selected_process = max(processes, key=lambda x: x.response_ratio) selected_process.start_time = current_time selected_process.complete_time = current_time + selected_process.burst_time selected_process.turnaround_time = selected_process.complete_time - selected_process.arrival_time current_time = selected_process.complete_time completed_processes.append(selected_process) return completed_processes #重复上述过程直到所有进程都完成。 # 创建进程列表 processes = [ Process(1, 0, 7), #(进程id,到达时间,执行时间) Process(2, 1, 8), Process(3, 2, 6), Process(4, 3, 4), ] # 运行调度算法 completed_processes = hrrn(processes) # 输出结果 total_wait_time = sum([p.waiting_time for p in completed_processes]) total_turnaround_time = sum([p.turnaround_time for p in completed_processes]) total_weighted_turnaround_time = sum([p.turnaround_time / p.burst_time for p in completed_processes]) for p in completed_processes: print( f"Process {p.pid}:到达时间 {p.arrival_time},所需执行时间{p.burst_time},开始时间{p.start_time},结束时间 {p.complete_time},周转时间 {p.turnaround_time},带权周转时间 {p.turnaround_time / p.burst_time:.2f}") print(f"平均周转时间:{total_turnaround_time / len(completed_processes):.2f}") print(f"平均带权周转时间:{total_weighted_turnaround_time / len(completed_processes):.2f}") #对进程列表进行修改 #结果预计为: # Process 1:到达时间 0,所需执行时间7,开始时间0,结束时间 7,周转时间 7,带权周转时间 1.00 # Process 4:到达时间 3,所需执行时间4,开始时间7,结束时间 11,周转时间 8,带权周转时间 2.00 # Process 3:到达时间 2,所需执行时间6,开始时间11,结束时间 17,周转时间 15,带权周转时间 2.50 # Process 2:到达时间 1,所需执行时间8,开始时间17,结束时间 25,周转时间 24,带权周转时间 3.00 # 平均周转时间:13.50 # 平均带权周转时间:2.12 简述上述程序的设计思路

void ADC_Activate(void) { __IO uint32_t wait_loop_index = 0U; #if (USE_TIMEOUT == 1) uint32_t Timeout = 0U; /* Variable used for timeout management / #endif / USE_TIMEOUT / /## Operation on ADC hierarchical scope: ADC instance #####################/ / Note: Hardware constraint (refer to description of the functions / / below): / / On this STM32 series, setting of these features is conditioned to / / ADC state: / / ADC must be disabled. / / Note: In this example, all these checks are not necessary but are / / implemented anyway to show the best practice usages / / corresponding to reference manual procedure. / / Software can be optimized by removing some of these checks, if / / they are not relevant considering previous settings and actions / / in user application. / if (LL_ADC_IsEnabled(ADC1) == 0) { / Run ADC self calibration / LL_ADC_StartCalibration(ADC1, LL_ADC_CALIB_OFFSET); / Poll for ADC effectively calibrated / #if (USE_TIMEOUT == 1) Timeout = ADC_CALIBRATION_TIMEOUT_MS; #endif / USE_TIMEOUT / while (LL_ADC_IsCalibrationOnGoing(ADC1) != 0) { #if (USE_TIMEOUT == 1) / Check Systick counter flag to decrement the time-out value / if (LL_SYSTICK_IsActiveCounterFlag()) { if(Timeout-- == 0) { / Error: Time-out / Error_Handler(); } } #endif / USE_TIMEOUT / } / Delay between ADC end of calibration and ADC enable. / / Note: Variable divided by 2 to compensate partially / / CPU processing cycles (depends on compilation optimization). / wait_loop_index = (ADC_DELAY_CALIB_ENABLE_CPU_CYCLES >> 1); while(wait_loop_index != 0) { wait_loop_index--; } / Enable ADC / LL_ADC_Enable(ADC1); / Poll for ADC ready to convert / #if (USE_TIMEOUT == 1) Timeout = ADC_ENABLE_TIMEOUT_MS; #endif / USE_TIMEOUT / while (LL_ADC_IsActiveFlag_ADRDY(ADC1) == 0) { #if (USE_TIMEOUT == 1) / Check Systick counter flag to decrement the time-out value / if (LL_SYSTICK_IsActiveCounterFlag()) { if(Timeout-- == 0) { / Error: Time-out / Error_Handler(); } } #endif / USE_TIMEOUT / } / Note: ADC flag ADRDY is not cleared here to be able to check ADC / / status afterwards. / / This flag should be cleared at ADC Deactivation, before a new / / ADC activation, using function "LL_ADC_ClearFlag_ADRDY()". */ }请逐行解释代码

最新推荐

recommend-type

如何修改mysql数据库的max_allowed_packet参数

本篇文章是对修改mysql数据库的max_allowed_packet参数进行了详细的分析介绍,需要的朋友参考下
recommend-type

基于Java实现的明日知道系统.zip

基于Java实现的明日知道系统
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

HSV转为RGB的计算公式

HSV (Hue, Saturation, Value) 和 RGB (Red, Green, Blue) 是两种表示颜色的方式。下面是将 HSV 转换为 RGB 的计算公式: 1. 将 HSV 中的 S 和 V 值除以 100,得到范围在 0~1 之间的值。 2. 计算色相 H 在 RGB 中的值。如果 H 的范围在 0~60 或者 300~360 之间,则 R = V,G = (H/60)×V,B = 0。如果 H 的范围在 60~120 之间,则 R = ((120-H)/60)×V,G = V,B = 0。如果 H 的范围在 120~180 之间,则 R = 0,G = V,B =
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、
recommend-type

已知自动控制原理中通过更高的频率特征来评估切割频率和库存——相位稳定。确定封闭系统的稳定性。求Wcp 和ψ已知W(p)=30•(0.1p+1)•(12.5p+1)/p•(10p+1)•(0.2p+1)•(p+1)

根据相位稳定的定义,我们需要找到一个频率 Wcp,使得相位满足 -ψ = -180°,即 ψ = 180°。此时系统的相位裕度为 0°,系统处于边缘稳定状态。 首先,我们需要将 W(p) 表示成极点和零点的形式。将分母和分子分别因式分解,得到: W(p) = 30 • (0.1p+1) • (12.5p+1) / [p • (10p+1) • (0.2p+1) • (p+1)] = 375p/(p+1) - 3750/(10p+1) + 750p/(0.2p+1) - 3750p/(10p+1) + 150p/(p+1) + 30 因此,系统的极点为 -1、-0.1、-0.2、