np.array()参数
时间: 2024-05-26 10:06:28 浏览: 80
np.array()是NumPy库中用于创建数组的函数。它可以接受不同类型的参数来创建数组,以下是np.array()的常见参数:
1. object:可以是列表、元组、其他数组、数组样式的字符串或者其他支持数组的对象。例如,[1, 2, 3]、(4, 5, 6)、[[1, 2], [3, 4]]等。
2. dtype:可选参数,用于指定数组的数据类型。例如,np.array([1, 2, 3], dtype=float)将创建一个浮点型数组。
3. copy:可选参数,默认为True。当设置为False时,如果输入参数是一个ndarray对象,则不会进行复制操作,直接返回一个新的视图。
4. order:可选参数,默认为'C',表示以C风格的行优先顺序存储多维数据。也可以设置为'F',表示以Fortran风格的列优先顺序存储多维数据。
示例:
```
import numpy as np
# 创建一个一维数组
arr1 = np.array([1, 2, 3])
print(arr1)
# 创建一个二维数组
arr2 = np.array([[1, 2], [3, 4]])
print(arr2)
# 指定数据类型
arr3 = np.array([1, 2, 3], dtype=float)
print(arr3)
```
相关问题
领回归的话np.random.seed(42) q=np.array(X1) w=np.array(x2) e=np.array(x3) r=np.array(x4) t=np.array(x5) p=np.array(x6) u=np.array(x7) eps=np.random.normal(0,0.05,152) X=np.c_[q,w,e,r,t,p,u] beta=[0.1,0.15,0.2,0.5,0.33,0.45,0.6] y=np.dot(X,beta) X_model=sm.add_constant(X) model=sm.OLS(y,X_model) results=model.fit() print(results.summary())这个代码需要改变嘛?
这段代码实现了多元线性回归模型,如果你要改为岭回归或Lasso回归,需要使用相应的库和函数,并设置不同的惩罚参数alpha。下面是一个岭回归的例子,你可以参考一下:
```
from sklearn.linear_model import Ridge
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import train_test_split
np.random.seed(42)
q = np.array(X1)
w = np.array(x2)
e = np.array(x3)
r = np.array(x4)
t = np.array(x5)
p = np.array(x6)
u = np.array(x7)
eps = np.random.normal(0, 0.05, 152)
X = np.c_[q, w, e, r, t, p, u]
beta = [0.1, 0.15, 0.2, 0.5, 0.33, 0.45, 0.6]
y = np.dot(X, beta)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
alpha = 0.1 # 设置岭回归的惩罚参数
ridge = Ridge(alpha=alpha)
ridge.fit(X_train, y_train)
y_pred = ridge.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
print('MSE:', mse)
```
如果要使用Lasso回归,可以将岭回归的代码中的Ridge替换成Lasso,并设置不同的惩罚参数alpha,如下所示:
```
from sklearn.linear_model import Lasso
alpha = 0.1 # 设置Lasso回归的惩罚参数
lasso = Lasso(alpha=alpha)
lasso.fit(X_train, y_train)
y_pred = lasso.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
print('MSE:', mse)
```
需要注意的是,岭回归和Lasso回归的惩罚参数alpha需要根据具体数据集和问题进行调整,以达到最优的预测性能。
import numpy as np # 定义字典 usefuldata = {0: [], 1: [np.array([15., 15., 75.]), np.array([15., 15., 45.])], 2: [np.array([15., 75., 15.]), np.array([15., 45., 15.])], 3: [np.array([15., 75., 75.]), np.array([15., 45., 75.]), np.array([15., 75., 45.])], 4: [np.array([75., 15., 15.]), np.array([45., 15., 15.])], 5: [np.array([75., 15., 75.]), np.array([75., 15., 45.]), np.array([45., 15., 75.]), np.array([45., 15., 45.])], 6: [np.array([75., 75., 15.]), np.array([75., 45., 15.]), np.array([45., 75., 15.]), np.array([45., 45., 15.])], 7: [np.array([75., 75., 75.]), np.array([75., 45., 75.]), np.array([75., 75., 45.]), np.array([75., 45., 45.]), np.array([45., 75., 75.]), np.array([45., 45., 75.]), np.array([45., 75., 45.]), np.array([45., 45., 45.])]} # 遍历字典 for k, v in usefuldata.items(): if len(v) > 0: # 如果该键对应的值非空 # 将数组转化为numpy数组 v = np.array(v) if len(v) == 1: # 数据点仅有一个的情况 slope = np.array([0, 0, 0]) # 斜率设为0 intercept = v[0] # 截距为数据点本身 else: # 进行一次线性拟合,拟合结果为斜率和截距 slope, intercept = np.polyfit(np.arange(len(v)), v, 1) # 输出拟合结果 print("键{}对应的值{}拟合得到的斜率为{},截距为{}".format(k, v, slope, intercept)) # 计算直线方程 eq = "z = {}x + {}y + ({})".format(slope[0], slope[1], intercept[2]) print("直线方程为:", eq) else: print("键{}对应的值为空".format(k))。请你改写这一段代码,代码中字典的参数有变化,变成了{0: [], 1: [], 2: [], 3: [array([15., 75., 75.]), array([15., 45., 75.]), array([15., 75., 45.])], 4: [], 5: [array([75., 15., 75.]), array([75., 15., 45.]), array([45., 15., 75.]), array([45., 15., 45.])], 6: [array([75., 75., 15.]), array([75., 45., 15.]), array([45., 75., 15.]), array([45., 45., 15.])], 7: [array([75., 75., 75.]), array([75., 45., 75.]), array([75., 75., 45.]), array([75., 45., 45.]), array([45., 75., 75.]), array([45., 45., 75.]), array([45., 75., 45.]), array([45., 45., 45.])]}
import numpy as np
usefuldata = {
0: [],
1: [],
2: [],
3: [np.array([15., 75., 75.]), np.array([15., 45., 75.]), np.array([15., 75., 45.])],
4: [],
5: [np.array([75., 15., 75.]), np.array([75., 15., 45.]), np.array([45., 15., 75.]), np.array([45., 15., 45.])],
6: [np.array([75., 75., 15.]), np.array([75., 45., 15.]), np.array([45., 75., 15.]), np.array([45., 45., 15.])],
7: [np.array([75., 75., 75.]), np.array([75., 45., 75.]), np.array([75., 75., 45.]), np.array([75., 45., 45.]), np.array([45., 75., 75.]), np.array([45., 45., 75.]), np.array([45., 75., 45.]), np.array([45., 45., 45.])]
}
# 遍历字典
for k, v in usefuldata.items():
if len(v) > 0: # 如果该键对应的值非空
# 将数组转化为numpy数组
v = np.array(v)
if len(v) == 1: # 数据点仅有一个的情况
slope = np.array([0, 0, 0]) # 斜率设为0
intercept = v[0] # 截距为数据点本身
else:
# 进行一次线性拟合,拟合结果为斜率和截距
slope, intercept = np.polyfit(np.arange(len(v)), v, 1)
# 输出拟合结果
print("键{}对应的值{}拟合得到的斜率为{},截距为{}".format(k, v, slope, intercept))
# 计算直线方程
eq = "z = {}x + {}y + ({})".format(slope[0], slope[1], intercept[2])
print("直线方程为:", eq)
else:
print("键{}对应的值为空".format(k))
阅读全文