w_0= w_max/(1+exp(-beta0)) + w_min/(1+exp(beta0));

时间: 2024-04-29 11:21:23 浏览: 8
这段代码是用于计算一个值w_0的表达式。其中,w_max和w_min是两个常数,beta0是一个变量。表达式的计算过程为: 1. 将beta0传入exp函数中,计算出exp(-beta0)和exp(beta0)的值; 2. 将w_max和w_min分别除以1+exp(-beta0)和1+exp(beta0)的值; 3. 将上述两个结果相加,得到最终的结果w_0。 需要注意的是,表达式中的exp函数是MATLAB中的指数函数,可以计算自然指数e的任意次幂。
相关问题

使用Matlab对 P=[0.1 0.7 0.8 0.8 1.0 0.3 0.0 -0.3 -0.5 -1.5; 1.2 1.8 1.6 0.6 0.8 0.5 0.2 0.8 -1.5 -1.3]; T=[ 1 1 1 0 0 1 1 1 0 0; 0 0 0 0 0 1 1 1 1 1]的输入输出矢量进行多神经元分类,采用感知器算法、BP神经网络算法、RBF神经网络算法、和自组织神经网络算法进行多神经元分类,要求画出最后的线形图。不使用工具箱。

感知器算法: 首先,我们需要对 P 和 T 进行归一化处理,将每一列的值都减去该列的平均值,然后除以该列的标准差。这是因为感知器算法对于输入数据的范围很敏感,而归一化处理可以将数据映射到一个相对较小的范围内,有利于算法的收敛。 接着,我们需要初始化感知器的权重矩阵 W 和阈值 b,可以随机生成一些小数作为初始值。然后,我们可以使用以下算法进行训练: 1. 随机从 P 中选取一个样本 x,并将其输入到感知器中,计算输出 y。 2. 如果 y 大于等于 0,则将该样本标记为类别 1,否则标记为类别 0。 3. 如果 y 与该样本的真实类别不一致,则更新权重矩阵和阈值: W = W + α * x * (t - y)' b = b + α * (t - y) 其中,α 是学习率,t 是该样本的真实类别。 4. 重复上述步骤,直到所有样本都被正确分类或达到最大迭代次数。 下面是感知器算法的 Matlab 代码实现: % 归一化处理 P_norm = (P - mean(P, 2)) ./ std(P, 0, 2); % 初始化权重矩阵和阈值 W = rand(size(T, 1), size(P_norm, 1)); b = rand(size(T, 1), 1); % 训练感知器 max_iter = 1000; alpha = 0.1; for i = 1:max_iter % 随机选取一个样本 idx = randi(size(P_norm, 2)); x = P_norm(:, idx); t = T(:, idx); % 计算输出 y = W * x + b; % 更新权重矩阵和阈值 if y >= 0 y = 1; else y = 0; end if sum(abs(y - t)) > 0 W = W + alpha * (t - y) * x'; b = b + alpha * (t - y); end % 检查是否所有样本都被正确分类 if sum(abs(sign(W * P_norm + b) - T)) == 0 break; end end % 画出最后的线性分类器 x = linspace(min(P_norm(1, :)), max(P_norm(1, :)), 100); y = (-b(1) - W(1, 1) * x) / W(1, 2); plot(x, y, 'r'); hold on; y = (-b(2) - W(2, 1) * x) / W(2, 2); plot(x, y, 'b'); title('Perceptron Algorithm'); xlabel('Feature 1'); ylabel('Feature 2'); legend('Class 1', 'Class 2'); BP神经网络算法: BP神经网络算法需要先设计神经网络的结构,包括输入层、隐藏层和输出层的节点数,以及每个节点之间的连接权重。我们可以随机生成一些小数作为初始权重值。然后,我们可以使用以下算法进行训练: 1. 将一个样本 x 输入到神经网络中,计算输出 y。 2. 计算输出层的误差 E_out: E_out = (t - y) .* y .* (1 - y) 其中,t 是该样本的真实类别。 3. 反向传播误差,计算隐藏层的误差 E_hid: E_hid = W_out' * E_out .* y_hid .* (1 - y_hid) 其中,W_out 是输出层和隐藏层之间的连接权重,y_hid 是隐藏层的输出。 4. 更新连接权重: W_out = W_out + α * y_hid * E_out' W_hid = W_hid + α * x * E_hid' 其中,α 是学习率。 5. 重复上述步骤,直到所有样本都被正确分类或达到最大迭代次数。 下面是BP神经网络算法的 Matlab 代码实现: % 归一化处理 P_norm = (P - mean(P, 2)) ./ std(P, 0, 2); % 设计神经网络结构 n_input = size(P_norm, 1); n_hidden = 5; n_output = size(T, 1); % 初始化连接权重 W_hid = rand(n_hidden, n_input); W_out = rand(n_output, n_hidden); b_hid = rand(n_hidden, 1); b_out = rand(n_output, 1); % 训练神经网络 max_iter = 1000; alpha = 0.1; for i = 1:max_iter % 随机选取一个样本 idx = randi(size(P_norm, 2)); x = P_norm(:, idx); t = T(:, idx); % 计算输出 y_hid = 1 ./ (1 + exp(-(W_hid * x + b_hid))); y_out = 1 ./ (1 + exp(-(W_out * y_hid + b_out))); % 计算误差 E_out = (t - y_out) .* y_out .* (1 - y_out); E_hid = (W_out' * E_out) .* y_hid .* (1 - y_hid); % 更新连接权重 W_out = W_out + alpha * y_hid * E_out'; W_hid = W_hid + alpha * x * E_hid'; b_out = b_out + alpha * E_out; b_hid = b_hid + alpha * E_hid; % 检查是否所有样本都被正确分类 if sum(abs(sign(W_out * (1 ./ (1 + exp(-(W_hid * P_norm + b_hid)))) + b_out) - T)) == 0 break; end end % 画出最后的线性分类器 x = linspace(min(P_norm(1, :)), max(P_norm(1, :)), 100); y = (-b_out(1) - W_out(1, 1) * (1 ./ (1 + exp(-(W_hid(1, :) * x + b_hid(1)))))) / W_out(1, 2); plot(x, y, 'r'); hold on; y = (-b_out(2) - W_out(2, 1) * (1 ./ (1 + exp(-(W_hid(2, :) * x + b_hid(2)))))) / W_out(2, 2); plot(x, y, 'b'); title('BP Neural Network Algorithm'); xlabel('Feature 1'); ylabel('Feature 2'); legend('Class 1', 'Class 2'); RBF神经网络算法: RBF神经网络算法需要先选择一些基函数,比如高斯函数,作为隐藏层节点的函数。我们可以随机选择一些样本作为基函数的中心点,并将每个样本的输出类别作为基函数的权重。然后,我们可以使用以下算法进行训练: 1. 将一个样本 x 输入到神经网络中,计算输出 y。 2. 计算输出层的误差 E_out: E_out = t - y 其中,t 是该样本的真实类别。 3. 计算隐藏层的输出 y_hid: y_hid(i) = exp(-||x - c(i)||^2 / (2 * σ^2)) 其中,c(i) 是第 i 个基函数的中心点,σ 是高斯函数的标准差。 4. 更新连接权重: W = pinv(Y) * E_out 其中,Y 是隐藏层的输出矩阵。 5. 重复上述步骤,直到所有样本都被正确分类或达到最大迭代次数。 下面是RBF神经网络算法的 Matlab 代码实现: % 归一化处理 P_norm = (P - mean(P, 2)) ./ std(P, 0, 2); % 选择基函数 n_hidden = 5; idx = randperm(size(P_norm, 2), n_hidden); c = P_norm(:, idx); % 初始化连接权重 sigma = 1; Y = zeros(n_hidden, size(P_norm, 2)); for i = 1:size(P_norm, 2) for j = 1:n_hidden Y(j, i) = exp(-norm(P_norm(:, i) - c(:, j))^2 / (2 * sigma^2)); end end W = pinv(Y) * T'; % 训练神经网络 max_iter = 1000; alpha = 0.1; for i = 1:max_iter % 随机选取一个样本 idx = randi(size(P_norm, 2)); x = P_norm(:, idx); t = T(:, idx); % 计算输出 y_hid = zeros(n_hidden, 1); for j = 1:n_hidden y_hid(j) = exp(-norm(x - c(:, j))^2 / (2 * sigma^2)); end y_out = W' * y_hid; % 计算误差 E_out = t - y_out; % 更新连接权重 for j = 1:n_hidden W(j, :) = W(j, :) + alpha * E_out * y_hid(j); end % 检查是否所有样本都被正确分类 if sum(abs(sign(W' * exp(-pdist2(c', P_norm').^2 / (2 * sigma^2))) - T)) == 0 break; end end % 画出最后的线性分类器 x = linspace(min(P_norm(1, :)), max(P_norm(1, :)), 100); y = (-W(1, 1) - W(2, 1) * exp(-norm(x - c(:, 1))^2 / (2 * sigma^2))) / W(3, 1); plot(x, y, 'r'); hold on; y = (-W(1, 2) - W(2, 2) * exp(-norm(x - c(:, 2))^2 / (2 * sigma^2))) / W(3, 2); plot(x, y, 'b'); title('RBF Neural Network Algorithm'); xlabel('Feature 1'); ylabel('Feature 2'); legend('Class 1', 'Class 2'); 自组织神经网络算法: 自组织神经网络算法需要先选择一些节点作为初始网络的节点,并随机生成一些小数作为初始权重值。然后,我们可以使用以下算法进行训练: 1. 将一个样本 x 输入到神经网络中,找到与其最近的节点 i。 2. 更新节点 i 和其周围节点的权重: W(i) = W(i) + α * (x - W(i)) W(j) = W(j) + β * (x - W(j)) 其中,α 和 β 是学习率,j 是与节点 i 相邻的节点。 3. 重复上述步骤,直到所有样本都被正确分类或达到最大迭代次数。 下面是自组织神经网络算法的 Matlab 代码实现: % 归一化处理 P_norm = (P - mean(P, 2)) ./ std(P, 0, 2); % 初始化神经网络 n_nodes = 5; W = rand(n_nodes, size(P_norm, 1)); % 训练神经网络 max_iter = 1000; alpha = 0.1; beta = 0.2; sigma = 1; for i = 1:max_iter % 随机选取一个样本 idx = randi(size(P_norm, 2)); x = P_norm(:, idx); % 找到与 x 最近的节点 dist = pdist2(x', W'); [~, i] = min(dist); % 更新节点权重 for j = 1:n_nodes if j == i W(j, :) = W(j, :) + alpha * (x - W(j, :)); elseif dist(j) < sigma W(j, :) = W(j, :) + beta * (x - W(j, :)); end end % 检查是否所有样本都被正确分类 if sum(abs(sign(W * P_norm') - T)) == 0 break; end end % 画出最后的线性分类器 x = linspace(min(P_norm(1, :)), max(P_norm(1, :)), 100); y = (-W(1, 1) - W(1, 2) * x) / W(1, 3); plot(x, y, 'r'); hold on; y = (-W(2, 1) - W(2, 2) * x) / W(2, 3); plot(x, y, 'b'); title('SOM Neural Network Algorithm'); xlabel('Feature 1'); ylabel('Feature 2'); legend('Class 1', 'Class 2');

在实际应用中,数据分析工程师获得的只是数据,而不清楚数据的产生机理。对于0-1二分类响应变量 Y,Logistic回归是非常常用的分类建模方法。对于从模型(1)中产生的独立同分布观测样本{(x_i,y_i),i = 1,⋯,n}.,建立Logistic 回归模型用信赖域算法和局部二次似编程实现β的Logistic回归估计python代码

以下是使用信赖域算法和局部二次似编程实现Logistic回归估计的Python代码: ```python import numpy as np from scipy.optimize import minimize # sigmoid函数 def sigmoid(z): return 1 / (1 + np.exp(-z)) # Logistic回归模型 def logistic_model(beta, X): return sigmoid(np.dot(X, beta)) # 对数似然函数 def log_likelihood(beta, X, y): p = logistic_model(beta, X) return np.sum(y*np.log(p) + (1-y)*np.log(1-p)) # 对数似然函数的梯度 def log_likelihood_gradient(beta, X, y): p = logistic_model(beta, X) return np.dot(X.T, y-p) # 对数似然函数的海森矩阵 def log_likelihood_hessian(beta, X, y): p = logistic_model(beta, X) W = np.diag(p*(1-p)) return np.dot(np.dot(X.T, W), X) # 信赖域算法 def trust_region_method(beta_init, X, y): # 定义初始步长 delta = 1.0 # 定义信赖域半径 rho = 0.5 # 定义最大迭代次数 max_iter = 100 beta = beta_init for i in range(max_iter): # 计算梯度和海森矩阵 grad = log_likelihood_gradient(beta, X, y) hess = log_likelihood_hessian(beta, X, y) # 求解步长 p, success = minimize(lambda x: -log_likelihood(x, X, y), grad, method='Newton-CG', jac=log_likelihood_gradient, hess=log_likelihood_hessian, options={'xtol': 1e-8, 'disp': False}) # 计算预测值 p = logistic_model(beta+p, X) # 计算实际下降量 actual_reduction = log_likelihood(beta+p, X, y) - log_likelihood(beta, X, y) # 计算模型预测下降量 predicted_reduction = -np.dot(grad, p) - 0.5*np.dot(np.dot(p, hess), p) # 计算rho rho = actual_reduction / predicted_reduction # 根据rho更新beta if rho < 0.25: delta = 0.25 * delta else: if rho > 0.75 and np.abs(np.linalg.norm(p) - delta) < 1e-8: delta = min(2.0*delta, 1000) if rho > 0: beta = beta + p return beta # 局部二次似方法 def local_quadratic_method(beta_init, X, y): # 定义最大迭代次数 max_iter = 100 beta = beta_init for i in range(max_iter): # 计算梯度和海森矩阵 grad = log_likelihood_gradient(beta, X, y) hess = log_likelihood_hessian(beta, X, y) # 求解步长 p = np.linalg.solve(hess, -grad) # 计算预测值 p = logistic_model(beta+p, X) # 计算实际下降量 actual_reduction = log_likelihood(beta+p, X, y) - log_likelihood(beta, X, y) # 计算模型预测下降量 predicted_reduction = -np.dot(grad, p) - 0.5*np.dot(np.dot(p, hess), p) # 计算alpha alpha = actual_reduction / predicted_reduction # 根据alpha更新beta beta = beta + alpha*p return beta ```

相关推荐

用MATLAB编程求解,并给出代码。已知w=[0,1,1,1,1,1,1,1],h=[0,1.083,0.875,0.875,0.83,1.25,0.875,1.125],d=[520,370,551,5300,1000,2400,1300],tmin=[0,1.5,3.1,4.3,19,22.5,29,33],tmax=[0,2.5,4.5,6,23,25,30,34],V=[17,14,17,14,12,16,15],β=[72,40,75,42,38,60,50],vmin=[8.67,9.8,7.6,8.1,7.3,6.9, 6.5],vmax=[18,19.2,18.7,25.2,23.4,23.7,22],A=480,B=720,C=2.7,D=125000.设七个未知量分别为x1,x2,x3,x4,x5,x6,x7.未知量需要满足vmin(i)≤x(i)≤vmax(i).令 t1=0, t2(x1)=t1+w(2)+d(1)/(24x1), t3(x1,x2)=t2(x1)+h(2)+w(3)+d(2)/(24x2), t4(x1,x2,x3)=t3(x1,x2)+h(3)+w(4)+d(3)/(24x3), t5(x1,x2,x3,x4)=t4(x1,x2,x3)+h(4)+w(5)+d(4)/(24x4), t6(x1,x2,x3,x4,x5)=t5(x1,x2,x3,x4)+h(5)+w(6)+d(5)/(24x5), t7(x1,x2,x3,x4,x5,x6)=t6(x1,x2,x3,x4,x5)+h(6)+w(7)+d(6)/(24x6), t8(x1,x2,x3,x4,x5,x6,x7)=t7(x1,x2,x3,x4,x5,x6)+h(7)+w(7)+w(8)+d(7)/(24x7), T(x1,x2,x3,x4,x5,x6,x7)=t8(x1,x2,x3,x4,x5,x6,x7)+h(8), t(i)需要满足tmin(i)≤t(i)(x1,......,xi)≤tmax(i),函数T(x1,x2,x3,x4,x5,x6,x7)≤40 令个函数为f1(x1,x2,x3,x4,x5,x6,x7)=A∑((β(i)*d(i)x(i))/(24V(i)^3)+(D/720)∑(d(i)/x(i))+BT(x1,x2,x3,x4,x5,x6,x7)*C,求出它的最大值f1max和最小值f1min,命令新函数f11(x1,x2,x3,x4,x5,x6,x7)=(f1(x1,x2,x3,x4,x5,x6,x7)-f1min)/(f1max-f1min),求f11的最小值。 令函数f2(x1,x2,x3,x4,x5,x6,x7)=(e(1)*β(i)*d(i)x(i))/(24V(i)^3)+e(2)CT(x1,x2,x3,x4,x5,x6,x7),求出它的最大值f2max和最小值f2min,命令新函数f22(x1,x2,x3,x4,x5,x6,x7)=(f1(x1,x2,x3,x4,x5,x6,x7)-f1min)/(f1max-f1min),求f22的最小值。 设未知数u(1),u(2) 定义函数f=u(1)f11(x1,x2,x3,x4,x5,x6,x7)+u(2)f22(x1,x2,x3,x4,x5,x6,x7),求出f的Pareto最优解集 求出f11(x1,x2,x3,x4,x5,x6,x7)的最小值f11min,求出f22(x1,x2,x3,x4,x5,x6,x7)的最小值f22min

最新推荐

recommend-type

BSC关键绩效财务与客户指标详解

BSC(Balanced Scorecard,平衡计分卡)是一种战略绩效管理系统,它将企业的绩效评估从传统的财务维度扩展到非财务领域,以提供更全面、深入的业绩衡量。在提供的文档中,BSC绩效考核指标主要分为两大类:财务类和客户类。 1. 财务类指标: - 部门费用的实际与预算比较:如项目研究开发费用、课题费用、招聘费用、培训费用和新产品研发费用,均通过实际支出与计划预算的百分比来衡量,这反映了部门在成本控制上的效率。 - 经营利润指标:如承保利润、赔付率和理赔统计,这些涉及保险公司的核心盈利能力和风险管理水平。 - 人力成本和保费收益:如人力成本与计划的比例,以及标准保费、附加佣金、续期推动费用等与预算的对比,评估业务运营和盈利能力。 - 财务效率:包括管理费用、销售费用和投资回报率,如净投资收益率、销售目标达成率等,反映公司的财务健康状况和经营效率。 2. 客户类指标: - 客户满意度:通过包装水平客户满意度调研,了解产品和服务的质量和客户体验。 - 市场表现:通过市场销售月报和市场份额,衡量公司在市场中的竞争地位和销售业绩。 - 服务指标:如新契约标保完成度、续保率和出租率,体现客户服务质量和客户忠诚度。 - 品牌和市场知名度:通过问卷调查、公众媒体反馈和总公司级评价来评估品牌影响力和市场认知度。 BSC绩效考核指标旨在确保企业的战略目标与财务和非财务目标的平衡,通过量化这些关键指标,帮助管理层做出决策,优化资源配置,并驱动组织的整体业绩提升。同时,这份指标汇总文档强调了财务稳健性和客户满意度的重要性,体现了现代企业对多维度绩效管理的重视。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。

![【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。](https://p3-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/70a49cc62dcc46a491b9f63542110765~tplv-k3u1fbpfcp-zoom-in-crop-mark:1512:0:0:0.awebp) # 1. 俄罗斯方块游戏概述** 俄罗斯方块是一款经典的益智游戏,由阿列克谢·帕基特诺夫于1984年发明。游戏目标是通过控制不断下落的方块,排列成水平线,消除它们并获得分数。俄罗斯方块风靡全球,成为有史以来最受欢迎的视频游戏之一。 # 2.
recommend-type

卷积神经网络实现手势识别程序

卷积神经网络(Convolutional Neural Network, CNN)在手势识别中是一种非常有效的机器学习模型。CNN特别适用于处理图像数据,因为它能够自动提取和学习局部特征,这对于像手势这样的空间模式识别非常重要。以下是使用CNN实现手势识别的基本步骤: 1. **输入数据准备**:首先,你需要收集或获取一组带有标签的手势图像,作为训练和测试数据集。 2. **数据预处理**:对图像进行标准化、裁剪、大小调整等操作,以便于网络输入。 3. **卷积层(Convolutional Layer)**:这是CNN的核心部分,通过一系列可学习的滤波器(卷积核)对输入图像进行卷积,以
recommend-type

绘制企业战略地图:从财务到客户价值的六步法

"BSC资料.pdf" 战略地图是一种战略管理工具,它帮助企业将战略目标可视化,确保所有部门和员工的工作都与公司的整体战略方向保持一致。战略地图的核心内容包括四个相互关联的视角:财务、客户、内部流程和学习与成长。 1. **财务视角**:这是战略地图的最终目标,通常表现为股东价值的提升。例如,股东期望五年后的销售收入达到五亿元,而目前只有一亿元,那么四亿元的差距就是企业的总体目标。 2. **客户视角**:为了实现财务目标,需要明确客户价值主张。企业可以通过提供最低总成本、产品创新、全面解决方案或系统锁定等方式吸引和保留客户,以实现销售额的增长。 3. **内部流程视角**:确定关键流程以支持客户价值主张和财务目标的实现。主要流程可能包括运营管理、客户管理、创新和社会责任等,每个流程都需要有明确的短期、中期和长期目标。 4. **学习与成长视角**:评估和提升企业的人力资本、信息资本和组织资本,确保这些无形资产能够支持内部流程的优化和战略目标的达成。 绘制战略地图的六个步骤: 1. **确定股东价值差距**:识别与股东期望之间的差距。 2. **调整客户价值主张**:分析客户并调整策略以满足他们的需求。 3. **设定价值提升时间表**:规划各阶段的目标以逐步缩小差距。 4. **确定战略主题**:识别关键内部流程并设定目标。 5. **提升战略准备度**:评估并提升无形资产的战略准备度。 6. **制定行动方案**:根据战略地图制定具体行动计划,分配资源和预算。 战略地图的有效性主要取决于两个要素: 1. **KPI的数量及分布比例**:一个有效的战略地图通常包含20个左右的指标,且在四个视角之间有均衡的分布,如财务20%,客户20%,内部流程40%。 2. **KPI的性质比例**:指标应涵盖财务、客户、内部流程和学习与成长等各个方面,以全面反映组织的绩效。 战略地图不仅帮助管理层清晰传达战略意图,也使员工能更好地理解自己的工作如何对公司整体目标产生贡献,从而提高执行力和组织协同性。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【实战演练】井字棋游戏:开发井字棋游戏,重点在于AI对手的实现。

![【实战演练】井字棋游戏:开发井字棋游戏,重点在于AI对手的实现。](https://img-blog.csdnimg.cn/3d6666081a144d04ba37e95dca25dbd8.png) # 2.1 井字棋游戏规则 井字棋游戏是一个两人对弈的游戏,在3x3的棋盘上进行。玩家轮流在空位上放置自己的棋子(通常为“X”或“O”),目标是让自己的棋子连成一条直线(水平、垂直或对角线)。如果某位玩家率先完成这一目标,则该玩家获胜。 游戏开始时,棋盘上所有位置都为空。玩家轮流放置自己的棋子,直到出现以下情况之一: * 有玩家连成一条直线,获胜。 * 棋盘上所有位置都被占满,平局。
recommend-type

transformer模型对话

Transformer模型是一种基于自注意力机制的深度学习架构,最初由Google团队在2017年的论文《Attention is All You Need》中提出,主要用于自然语言处理任务,如机器翻译和文本生成。Transformer完全摒弃了传统的循环神经网络(RNN)和卷积神经网络(CNN),转而采用全连接的方式处理序列数据,这使得它能够并行计算,极大地提高了训练速度。 在对话系统中,Transformer模型通过编码器-解码器结构工作。编码器将输入序列转化为固定长度的上下文向量,而解码器则根据这些向量逐步生成响应,每一步都通过自注意力机制关注到输入序列的所有部分,这使得模型能够捕捉到
recommend-type

BSC关键绩效指标详解:财务与运营效率评估

BSC(Balanced Scorecard,平衡计分卡)是一种企业绩效管理系统,它将公司的战略目标分解为四个维度:财务、客户、内部流程和学习与成长。在这个文档中,我们看到的是针对特定行业(可能是保险或保险经纪)的BSC绩效考核指标汇总,专注于财务类和非财务类的关键绩效指标(KPIs)。 财务类指标: 1. 部门费用预算达成率:衡量实际支出与计划费用之间的对比,通过公式 (实际部门费用/计划费用)*100% 来计算,数据来源于部门的预算和实际支出记录。 2. 项目研究开发费用预算达成率:同样用于评估研发项目的资金管理,公式为 (实际项目研究开发费用/计划费用)*100%。 3. 课题费用预算达成率、招聘费用预算达成率、培训费用预算达成率 和 新产品研究开发费用预算达成率:这些都是人力资源相关开支的预算执行情况,涉及到费用的实际花费与计划金额的比例。 4. 承保利润:衡量保险公司盈利能力的重要指标,包括赔付率和寿险各险种的死差损益(实际死亡率与预期死亡率的差异)。 5. 赔付率:反映保险公司的赔付情况,是业务健康度的一个关键指标。 6. 内嵌价值的增加:代表了保单的价值增长,反映了公司长期盈利能力。 7. 人力成本总额控制率:通过比较实际人力成本与计划成本来评估人力成本的有效管理。 8. 标准保费达成率:衡量公司的销售业绩,即实际收取保费与目标保费的比率。 9. 其他费用比率,如附加佣金、续期推动费用、业务推动费用等,用来评估营销费用的效率。 非财务类指标: 1. 销售目标达成率:衡量销售团队完成预定目标的程度,通过实际销售额与计划销售额的比率计算。 2. 理赔率:体现客户服务质量和效率,涉及保险公司处理理赔请求的速度和成功率。 3. 产品/服务销售收入达成率:衡量产品或服务的实际销售效果,反映市场响应和客户满意度。 这些指标集合在一起,提供了全面的视角来评估公司的经营效率、财务表现以及战略执行情况。通过定期跟踪和分析这些数据,企业可以持续优化策略,提升业绩,确保与整体战略目标的一致性。每个指标的数据来源通常来自于相关部门的预算和实际操作记录,确保信息的准确性。
recommend-type

关系数据表示学习

关系数据卢多维奇·多斯桑托斯引用此版本:卢多维奇·多斯桑托斯。关系数据的表示学习机器学习[cs.LG]。皮埃尔和玛丽·居里大学-巴黎第六大学,2017年。英语。NNT:2017PA066480。电话:01803188HAL ID:电话:01803188https://theses.hal.science/tel-01803188提交日期:2018年HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaireUNIVERSITY PIERRE和 MARIE CURIE计算机科学、电信和电子学博士学院(巴黎)巴黎6号计算机科学实验室D八角形T HESIS关系数据表示学习作者:Ludovic DOS SAntos主管:Patrick GALLINARI联合主管:本杰明·P·伊沃瓦斯基为满足计算机科学博士学位的要求而提交的论文评审团成员:先生蒂埃里·A·退休记者先生尤尼斯·B·恩