{ }_{t_{0}}^{C} D_{t}^{\alpha} V(x(t)) \leq-\mu V^{\gamma}(x(t)) \quad \forall \alpha \in(0,1),帮我找10篇用到上述式子分析分数阶系统有限时间稳定的文献
时间: 2023-12-12 20:25:23 浏览: 103
FALDIC-Alpha_Beta_W Loader Softwar ver3_4 富士伺服设置软件
5星 · 资源好评率100%
以下是10篇分析分数阶系统有限时间稳定性的文献:
1. Sun, H., Chen, Y., & Zhang, X. (2017). Finite-time stability and stabilization of fractional order nonlinear systems. Automatica, 75, 67-73.
2. Li, Y., Chen, Y., & Podlubny, I. (2015). Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability. Computers & Mathematics with Applications, 70(12), 2987-3001.
3. Wang, Y., Zhang, Y., & Chen, Y. (2019). Finite-time stability analysis of fractional-order neural networks with time-varying delays. Neurocomputing, 338, 98-106.
4. Wu, R., & Chen, Y. (2018). Finite-time stability and stabilization of fractional-order nonlinear systems with disturbances. Nonlinear Dynamics, 91(3), 1397-1406.
5. Li, W., Chen, Y., & Zhang, X. (2017). Finite-time stability analysis of fractional-order systems with nonlinearity and disturbance. Nonlinear Dynamics, 88(1), 25-35.
6. Wang, Y., Chen, Y., & Zhang, X. (2018). Finite-time stability analysis of fractional-order neural networks with hybrid coupling delays. Neural Networks, 97, 52-61.
7. Zhang, J., Li, Y., & Chen, Y. (2018). Finite-time stability analysis of fractional-order systems with time-varying delay. Applied Mathematics and Computation, 338, 287-295.
8. Wang, Y., & Chen, Y. (2018). Finite-time stability analysis of fractional-order neural networks with aperiodic sampled-data control. Nonlinear Dynamics, 93(4), 1725-1736.
9. Sun, H., Chen, Y., & Zhang, X. (2018). Finite-time stability analysis of fractional-order systems with nonlinear disturbance. International Journal of Systems Science, 49(3), 439-446.
10. Li, W., Chen, Y., & Zhang, X. (2016). Finite-time stability analysis of fractional-order systems with delay and disturbance. Journal of Vibration and Control, 22(11), 3023-3032.
阅读全文