input1 = Input(shape=(trainX1.shape[1], trainX1.shape[2],)) # 定义attention权重 attention_weights1 = TimeDistributed(Dense(1))(input1) attention_weights1 = Activation('softmax')(attention_weights1) # 将attention权重应用于输入数据 context_vector1 = Dot(axes=(2, 1))([attention_weights1, input1]) 形态不匹配,如何解决
时间: 2023-12-03 22:47:04 浏览: 103
NN.rar_IMC.m_input shape_神经网络 逆_逆模型
5星 · 资源好评率100%
根据你提供的代码,问题似乎出在输入数据的维度不匹配。假设`trainX1`的维度是`(batch_size, seq_len, input_dim)`,那么定义输入层时应该将`shape`参数设置为`(seq_len, input_dim)`,而不是 `(trainX1.shape[1], trainX1.shape[2])`。
因此,你可以将代码修改为:
```
input1 = Input(shape=(trainX1.shape[1], trainX1.shape[2])) # 定义输入层
# 定义attention权重
attention_weights1 = TimeDistributed(Dense(1))(input1)
attention_weights1 = Activation('softmax')(attention_weights1)
# 将attention权重应用于输入数据
context_vector1 = Dot(axes=(2, 1))([attention_weights1, input1])
```
这样修改后,`input1`和`attention_weights1`的维度应该分别为`(batch_size, seq_len, input_dim)`和`(batch_size, seq_len, 1)`,可以顺利进行下一步操作。
阅读全文