small_image_tensor = torchvision.transforms.functional.to_tensor(small_image) TypeError: pic should be PIL Image or ndarray. Got <class 'NoneType'>
时间: 2024-03-05 18:48:19 浏览: 232
这个错误提示意味着 `small_image` 变量是一个空值(`NoneType`),无法被转换为张量。你可以检查一下代码中 `small_image` 变量的来源,确保它指向了一个可用的图像文件或图像数据。
通常情况下,可以使用 `PIL` 库加载图像,并将其转换为张量。你可以尝试使用以下代码加载图像,并将其转换为张量:
```
import torch
import torchvision.transforms as transforms
from PIL import Image
# 加载图像
small_image = Image.open('path/to/image.jpg')
# 转换为张量
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor()
])
small_image_tensor = transform(small_image)
```
在这里,我们使用 `Image.open` 方法加载图像,并使用 `transforms.Compose` 方法创建一个转换函数,其中包括将图像大小调整为 `(224, 224)` 并将图像转换为张量。最后,我们可以使用转换函数将图像转换为张量 `small_image_tensor`。如果你的图像不是 `.jpg` 格式,可以相应地更改文件扩展名。
相关问题
Traceback (most recent call last): File "C:\Users\sxq\PycharmProjects\pythonProject\main.py", line 95, in <module> imgnew=torchvision.transforms.ToTensor()(image) File "C:\Users\sxq\AppData\Roaming\Python\Python310\site-packages\torchvision\transforms\transforms.py", line 134, in __call__ return F.to_tensor(pic) File "C:\Users\sxq\AppData\Roaming\Python\Python310\site-packages\torchvision\transforms\functional.py", line 138, in to_tensor raise TypeError(f"pic should be PIL Image or ndarray. Got {type(pic)}") TypeError: pic should be PIL Image or ndarray. Got <class 'tuple'>
这个错误提示说明了输入的 `pic` 参数应该是 PIL 图像对象或者 ndarray 数组,但是你传入的是一个元组(tuple)类型的数据。请检查一下你的代码,看一下是不是在调用 `ToTensor()` 函数之前,将图像数据转换成了元组类型。你可能需要对图像数据进行预处理,确保它是 PIL 图像对象或者 ndarray 数组类型,才能正确地使用 `ToTensor()` 函数将图像转换为 Tensor 类型。
TypeError: pic should be Tensor or ndarray. Got <class 'PIL.Image.Image'>.
This error occurs when you are trying to pass a PIL Image object to a function or method that expects a Tensor or ndarray object.
To resolve this error, you can convert the PIL Image object to a Tensor or ndarray using the appropriate function. For example, if you are using PyTorch, you can use the torchvision.transforms.ToTensor() function to convert the PIL Image object to a Tensor.
Here is an example code snippet:
```
import torch
import torchvision.transforms as transforms
from PIL import Image
# Load the image using PIL
img = Image.open('image.jpg')
# Convert the image to a Tensor
tensor_img = transforms.ToTensor()(img)
# Pass the Tensor to the function/method that expects it
```
In this example, we first load the image using PIL, then convert it to a Tensor using the ToTensor() function from torchvision.transforms module. We can then pass the Tensor object to the function or method that expects it.
阅读全文