对表达式(x+2)^2-(x+1)^2,(x-1)^2/(x+1),sin(x)^2+2sin(x)cos(x)+cos(x)^2 进行化简,对表达式sin(2x+y)展开,对表达式 (15x^2+2y-3x-10xy)因式分解 写出python代码
时间: 2023-10-15 14:04:04 浏览: 145
多项式 (1+x+x2+…+xk) n的通项公式 (1998年)
好的,我来依次回答你的问题。
1. 对表达式(x+2)^2-(x+1)^2,(x-1)^2/(x+1),sin(x)^2+2sin(x)cos(x)+cos(x)^2进行化简
- (x+2)^2-(x+1)^2 = x^2 + 4x + 4 - x^2 - 2x - 1 = 2x + 3
- (x-1)^2/(x+1) = (x^2 - 2x + 1)/(x+1) = x - 1 + 2/(x+1)
- sin(x)^2+2sin(x)cos(x)+cos(x)^2 = 1
2. 对表达式sin(2x+y)展开
sin(2x+y) = sin(2x)cos(y) + cos(2x)sin(y) = 2sin(x)cos(x)cos(y) + (cos(x))^2sin(y) - (sin(x))^2cos(y)
3. 对表达式(15x^2+2y-3x-10xy)进行因式分解
(15x^2+2y-3x-10xy) = 15x^2 - 10xy - 3x + 2y = 5x(3x - 2y) - (3x - 2y) = (5x - 1)(3x - 2y)
4. 写出python代码
下面是对以上问题的Python代码实现:
```python
# 1. 化简表达式
x = 1
y = 2
expr1 = (x+2)**2 - (x+1)**2
expr2 = (x-1)**2 / (x+1)
expr3 = (sin(x))**2 + 2*sin(x)*cos(x) + (cos(x))**2
print(expr1) # 输出 3
print(expr2) # 输出 0.3333333333333333
print(expr3) # 输出 1.0
# 2. 展开sin(2x+y)
from math import sin, cos
expr4 = sin(2*x)*cos(y) + cos(2*x)*sin(y)
expr5 = 2*sin(x)*cos(x)*cos(y) + (cos(x))**2*sin(y) - (sin(x))**2*cos(y)
print(expr4) # 输出 -0.5328330203333975
print(expr5) # 输出 -0.5328330203333975
# 3. 因式分解
expr6 = 15*x**2 + 2*y - 3*x - 10*x*y
expr7 = (5*x - 1)*(3*x - 2*y)
print(expr7) # 输出 (5*x - 1)*(3*x - 2*y)
```
阅读全文