np.linalg.svd
时间: 2023-08-17 21:07:35 浏览: 79
np.linalg.svd is a function provided by the NumPy library in Python. It stands for Singular Value Decomposition and is used for matrix factorization. SVD decomposes a matrix into three separate matrices, U, S, and V.
Here's an example of how to use np.linalg.svd:
```python
import numpy as np
# Create a matrix
A = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
# Perform SVD
U, S, V = np.linalg.svd(A)
# U: Left singular vectors
# S: Singular values
# V: Right singular vectors
print("U:")
print(U)
print("S:")
print(S)
print("V:")
print(V)
```
The output will be the U, S, and V matrices. U contains the left singular vectors, S contains the singular values, and V contains the right singular vectors.
阅读全文
相关推荐
















