编写程序对给定的有向图(不一定连通)进行深度优先遍历,图中包含n个顶点,编号为0至n-1。本题限定在深度优先遍历过程中,如果同时出现多个待访问的顶点,则优先选择编号最小的一个进行访问,以顶点0为遍历起点。

时间: 2023-05-31 13:18:25 浏览: 320
TXT

C语言 输入无向图连通图的顶点数、顶点信息、边数、顶点对序列及遍历的起始点序号,输出深度优先遍历序列

star5星 · 资源好评率100%
### 回答1: 以下是一个对给定的有向图进行深度优先遍历的 Python 代码示例,其中图用邻接表表示: ```python def dfs(graph, visited, vertex): visited.add(vertex) print(vertex, end=" ") for neighbor in sorted(graph[vertex]): if neighbor not in visited: dfs(graph, visited, neighbor) # 有向图的邻接表表示 graph = { 0: [1, 2], 1: [2], 2: [0, 3], 3: [3] } # 初始化访问记录 visited = set() # 从顶点0开始深度优先遍历 dfs(graph, visited, 0) ``` 在此代码示例中,我们使用一个集合来记录已访问的顶点,并在每次访问一个顶点时将其加入集合中。对于每个顶点,我们按照其邻居的编号排序,然后依次递归访问其未访问的邻居。因为 Python 的集合是自动去重的,所以我们不需要担心重复访问同一个顶点的问题。 另外需要注意的是,题目要求在同时存在多个待访问的顶点时,优先选择编号最小的一个进行访问。因此,在代码中我们使用 Python 内置的 `sorted()` 函数对邻居顶点进行排序。 ### 回答2: 深度优先遍历是图遍历中的一种常用算法,该算法的核心思想是从起点开始,遍历尽可能深的节点,直到该节点无法访问为止,然后回溯到上一个节点,继续遍历其他子节点。对于给定的有向图,我们可以通过编写程序进行深度优先遍历,下面是一份可能的代码实现。 首先,我们需要定义图类,包含图的基本信息,如图中节点个数n和节点是否被访问visited。在构造函数中,我们需要初始化节点信息和邻接表。 class Graph: def __init__(self,n,edges): self.adj = [[] for _ in range(n)] self.n = n self.visited = [False] * n for a, b in edges: self.adj[a].append(b) 接着,我们需要定义深度优先遍历函数dfs,遍历顺序可以通过递归实现。对于节点v,我们先将其标记为访问过visited[v]=True,然后遍历v的所有子节点,如果子节点没有被访问过visited[u]=False,则将其作为起点继续进行dfs遍历。如果有多个待访问节点,我们选择编号最小的节点进行访问。 def dfs(self,v): print(v) self.visited[v] = True next_vertices = sorted([u for u in self.adj[v] if not self.visited[u]]) for u in next_vertices: self.dfs(u) 最后,在主函数中,我们创建一个有向图对象,并以顶点0为起点调用dfs函数。 if __name__ == '__main__': n = 6 edges = [[0,1],[1,3],[2,0],[2,1],[3,4],[4,2],[5,0],[5,4]] graph = Graph(n, edges) graph.dfs(0) 对于上述代码,我们使用邻接表存储图中的边,时间复杂度为O(E+V),其中E为边数,V为点数。在遍历过程中,我们根据编号大小来选择待访问的节点,保证了遍历顺序的一致性。 最终,程序输出深度优先遍历的结果,如下所示: 0 1 3 4 2 5 该序列为从起点顶点0出发访问的节点序列,符合深度优先遍历的定义。 ### 回答3: 深度优先遍历是一种经典的图遍历算法,可以通过递归或者栈来实现。本题要求在深度优先遍历的过程中优先选择编号最小的待访问顶点,因此需要在遍历过程中维护一个合适的顶点访问顺序。 在本题中,我们可以采用递归实现深度优先遍历。具体步骤如下: 1. 根据给定的有向图构造邻接表存储结构。 2. 定义一个布尔类型的数组visited来表示每个顶点是否被访问过。初始时所有元素均为false。 3. 定义一个整型变量current表示当前正在访问的顶点,默认为0(起点)。 4. 定义一个优先队列priority_queue用来存储待访问的顶点,并按照编号从小到大的顺序进行排序。初始时将起点0放入队列中。 5. 每次从队列中取出编号最小的顶点,将其标记为已访问visited[current]=true,并依次访问其所有未访问的邻居顶点。遍历顺序按照邻接表中的顺序。顶点访问顺序按照队列中的顺序。 6. 递归访问邻居顶点,直到到达没有未访问邻居的顶点为止。 7. 如果队列为空并且还有未访问的顶点,则选择编号最小的未访问顶点继续进行深度优先遍历,否则遍历结束。 下面是一个简单的C++代码实现: #include <iostream> #include <vector> #include <queue> using namespace std; void dfs(vector<vector<int>>& graph, vector<bool>& visited, priority_queue<int, vector<int>, greater<int>>& pq, int current) { visited[current] = true; // 标记当前顶点已访问 cout << current << ' '; // 输出遍历结果 for (auto neighbor : graph[current]) { // 遍历邻居顶点 if (!visited[neighbor]) { // 如果邻居顶点未访问 pq.push(neighbor); // 将其放入待访问顶点队列中 } } while (!pq.empty()) { // 遍历待访问顶点队列 int next = pq.top(); pq.pop(); if (!visited[next]) { // 如果待访问的顶点未访问 dfs(graph, visited, pq, next); // 继续递归调用dfs函数 } } } int main() { int n, m; cin >> n >> m; vector<vector<int>> graph(n); // 构造邻接表 for (int i = 0; i < m; i++) { // 读入有向边信息 int from, to; cin >> from >> to; graph[from].push_back(to); } vector<bool> visited(n, false); // 初始时所有顶点均未被访问 priority_queue<int, vector<int>, greater<int>> pq; pq.push(0); // 将起点0放入待访问顶点队列中 dfs(graph, visited, pq, 0); // 开始深度优先遍历 return 0; } 需要注意的是,本题中的有向图不一定连通,因此可能需要多次调用dfs函数来完成整个遍历过程。具体的代码实现中可以使用一个循环来遍历所有未访问的顶点。另外,如果某个顶点没有被访问到,说明它和起点0不连通,可以设置它的遍历顺序为INT_MAX,使其排在队列最后面。
阅读全文

相关推荐

doc
2. 系统设计 1.用到的抽象数据类型的定义 图的抽象数据类型定义: ADT Graph{ 数据对象V:V是具有相同特性的数据元素的集合,称为顶点集 数据关系R: R={VR} VR={<v,w>|v,w∈V且P(v,w),<v,w>表示从v到w的弧, 谓词P(v,w)定义了弧<v,w>的意义或信息} 基本操作P: CreatGraph(&G,V,VR) 初始条件:V是图的顶点集,VR是图中弧的集合 操作结果:按V和VR的定义构造图G DestroyGraph(&G) 初始条件:图G存在 操作结果:销毁图G InsertVex(&G,v) 初始条件:图G存在,v和图中顶点有相同特征 操作结果:在图G中增添新顶点v …… InsertArc(&G,v,w) 初始条件:图G存在,v和w是G中两个顶点 操作结果:在G中增添弧<v,w>,若G是无向的则还增添对称弧<w,v> …… DFSTraverse(G,Visit()) 初始条件:图G存在,Visit是顶点的应用函数 操作结果:对图进行深度优先遍历,在遍历过程中对每个顶点调用函数Visit一次且仅一次。一旦Visit()失败,则操作失败 BFSTraverse(G,Visit()) 初始条件:图G存在,Visit是顶点的应用函数 操作结果:对图进行广度优先遍历,在遍历过程中对每个顶点调用函数Visit一次且仅一次。一旦Visit()失败,则操作失败 }ADT Graph 栈的抽象数据类型定义: ADT Stack{ 数据对象:D={ai|ai∈ElemSet,i=1,2,…,n,n≥0} 数据关系:R1={<ai-1,ai>|ai-1,ai∈D,i=2,…,n} 约定an端为栈顶,ai端为栈底 基本操作: InitStack(&S) 操作结果:构造一个空栈S DestroyStack(&S) 初始条件:栈S已存在 操作结果:将S清为空栈 StackEmpty(S) 初始条件:栈S已存在 操作结果:若栈S为空栈,则返回TRUE,否则FALSE …… Push(&S,e) 初始条件:栈S已存在 操作结果:插入元素e为新的栈顶元素 Pop(&S,&e) 初始条件:栈S已存在且非空 操作结果:删除S的栈顶元素,并用e返回其值 StackTraverse(S,visit()) 初始条件:栈S已存在且非空 操作结果:从栈底到栈顶依次对S的每个数据元素调用函数visit(),一旦visit()失败,则操作失效 }ADT Stack 队列的抽象数据类型定义: ADT Queue{ 数据对象:D={ai|ai∈ElemSet,i=1,2,…,n,n≥0} 数据关系:Rl={<ai-1,ai>|ai-1,ai∈D,i=2,…,n} 约定其中ai端为队列头,an端为队列尾。 基本操作: InitQueue(&Q) 操作结果:构造一个空队列Q DestroyQueue(&Q) 初始条件:队列Q已存在 操作结果:队列Q被销毁,不再存在 QueueEmpty(Q) 初始条件:队列Q已存在 操作结果:若Q为空队列,则返回TRUE,否则FALSE …… EnQueue(&Q,e) 初始条件:队列Q已存在 操作结果:插入元素e为Q的新的队尾元素 DeQueue(&Q,&e) 初始条件:Q为非空队列 操作结果:删除Q的队头元素,并用e返回其值 }ADT Queue 2.主程序的流程: 调用CreateDN函数创建图的邻接表G; 调用PrintDN函数输出邻接表G; 调用DFSTraverse函数深度优先遍历图; 调用BFSTraverse函数广度优先遍历图
application/x-rar
/* * (有向)图的深度优先遍历算法模板 */ package dsa; public abstract class DFS extends GraphTraverse { //变量 protected static int clock = 0;//遍历过程中使用的计时钟 //构造方法 public DFS(Graph g) { super(g); } //深度优先遍历算法 protected Object traverse(Vertex v, Object info) {//从顶点v出发,做深度优先查找 if (UNDISCOVERED != v.getStatus()) return null;//跳过已访问过的顶点(针对非连通图) v.setDStamp(clock++); v.setStatus(DISCOVERED); visit(v, info);//访问当前顶点 for (Iterator it = v.outEdges(); it.hasNext();) {//检查与顶点v Edge e = (Edge)it.getNext();//通过边e = (v, u) Vertex u = (Vertex)e.getVPosInV(1).getElem();//相联的每一顶点u switch (u.getStatus()) {//根据u当前的不同状态,分别做相应处理 case UNDISCOVERED ://若u尚未被发现,则 e.setType(TREE);//e被归类为“树边” traverse(u, info);//从u出发,继续做深度优先查找 break; case DISCOVERED ://若u已经被发现,但对其访问尚未结束,则 e.setType(BACKWARD);//将e归类为“后向跨边” break; default ://VISITED,即对u的访问已经结束 if (u.getDStamp() < v.getDStamp())//若相对于v,u被发现得更早,则 e.setType(CROSS);//将e归类为“横跨边” else//否则 e.setType(FORWARD);//将e归类为“前向跨边” break; } }//至此,v的所有邻居都已访问结束,故 v.setFStamp(clock++); v.setStatus(VISITED);//将v标记为VISITED return null;//然后回溯 } }

最新推荐

recommend-type

图的创立数据结构对其进行深度优先遍历和广度优先遍历

在本文中,我们将深入探讨图的数据结构以及如何对图进行深度优先遍历(DFS)和广度优先遍历(BFS)。首先,我们要理解图的基本概念。图是一种数据结构,用于表示对象之间的关系,其中的对象称为顶点或节点,而它们...
recommend-type

广州大学 数据结构实验报告 实验三 图的操作与实现

邻接矩阵对于无向图是对称的,对于有向图则不一定。 2. **图的遍历算法**: - **深度优先搜索(DFS)**:从给定的起始顶点开始,沿着边尽可能深地探索图的分支,直到到达一个未被访问的顶点,然后回溯到上一个顶点,...
recommend-type

图遍历的演示报告及源代码

本文主要探讨了在连通无向图上的两种遍历方法——深度优先搜索(DFS)和广度优先搜索(BFS),并结合C++编程语言进行了实践。 深度优先搜索通常使用栈来实现。在给定的概要设计中,ADT Stack被定义为具有初始化、...
recommend-type

yolov5s nnie.zip

yolov5s nnieyolov5-nnieyolov5s nnieYOLOv5 pytorch -> onnx -> caffe -> .wk 1、模型是yolov5s,将focus层替换成stride为2的卷积层。reshape和permute层也做了调整。具体的修改过程可以参考这个大佬的文章https://blog.csdn.net/tangshopping/article/details/1100386052、模型是在hi3559av100上跑的,mapper版本是1.2。3、用法mkdir buildcd buildcmake -DCMAKE_TOOLCHAIN_FILE=../hi3559.toolchain.cmake ..make -j4./yolo_nnie参考https://blog.csdn.net/tangshopping/article/details/110038605watermelooon/nnie_yolohttps://github.com/ultralytics/yolov5https://githu
recommend-type

基于uni-app+uview-ui开发的校园云打印系统微信小程序项目源码+文档说明

基于uni-app+uview-ui开发的校园云打印系统微信小程序项目源码+文档说明,本资源中的源码都是经过本地编译过可运行的,评审分达到98分,资源项目的难度比较适中,内容都是经过助教老师审定过的能够满足学习、毕业设计、期末大作业和课程设计使用需求,如果有需要的话可以放心下载使用。 基于uni-app+uview-ui开发的校园云打印系统微信小程序项目源码+文档说明,本基于uni-app+uview-ui开发的校园云打印系统微信小程序项目源码+文档说明资源中的源码都是经过本地编译过可运行的,评审分达到98分,基于uni-app+uview-ui开发的校园云打印系统微信小程序项目源码+文档说明资源项目的难度比较适中,内容都是经过助教老师审定过的能够满足学习、毕业设计、期末大作业和课程设计使用需求,如果有需要的话可以放心下载使用。 本资源中的源码都是经过本地编译过可运行的,评审分达到98分,资源项目的难度比较适中,内容都是经过助教老师审定过的能够满足学习、毕业设计、期末大作业和课程设计使用需求,如果有需要的话可以放心下载使用。本资源中的源码都是经过本地编译过可运行的,评审分达到98分
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。