运行以下代码时:pop_data = pop_data.astype(float) eco_data = eco_data.astype(float),发生了如下错误:could not convert string to float: '17,.4',请写出问题所在,并给出解决代码
时间: 2023-11-22 07:54:21 浏览: 70
问题所在:
错误提示中显示了不能将字符串转换为浮点数,原因是字符串 '17,.4' 中包含了逗号,而逗号不是有效的数字表示形式。
解决代码:
可以使用字符串的 `replace()` 方法将逗号替换为点号,然后再进行类型转换。
```python
pop_data = pop_data.str.replace(',', '.').astype(float)
eco_data = eco_data.str.replace(',', '.').astype(float)
```
这样就将所有的逗号替换为点号,然后成功地将字符串转换为浮点数。
相关问题
import queueimport threadingfrom concurrent.futures import ThreadPoolExecutor, as_completedfrom threading import Eventdef push_data(data_queue: queue.Queue): while not stop_event.is_set(): data = "123" data_queue.put(data) stop_event.wait(0.5)def process_data(data): # 处理数据逻辑 print("Processing data:", data)if __name__ == '__main__': data_queue = queue.Queue() stop_event = Event() # 创建线程池 with ThreadPoolExecutor(max_workers=5) as executor: # 启动数据生产线程 t = threading.Thread(target=push_data, args=(data_queue,)) t.start() # 从队列中获取数据并处理 while not stop_event.is_set(): try: data = data_queue.get(timeout=1) except queue.Empty: continue # 提交任务到线程池 future = executor.submit(process_data, data) future.add_done_callback(lambda f: f.result()) # 关闭数据生产线程 stop_event.set() t.join() 代码优化,不要 Event
可以使用 `threading.Event` 代替 `queue.Queue` 来控制线程的结束。`threading.Event` 是一个线程同步的工具,可以让一个或多个线程等待某个事件的发生。具体地,可以创建一个 `Event` 对象,调用 `wait()` 方法等待事件的发生,调用 `set()` 方法通知事件的发生。
下面是一个使用 `Event` 改写后的代码:
```python
import queue
import threading
from concurrent.futures import ThreadPoolExecutor, as_completed
def push_data(data_list: list):
while data_list:
data = data_list.pop()
data_queue.put(data)
def process_data(data):
# 处理数据逻辑
print("Processing data:", data)
if __name__ == '__main__':
data_queue = queue.Queue()
data_list = ["123", "456", "789"]
# 创建线程池
with ThreadPoolExecutor(max_workers=5) as executor:
# 启动数据生产线程
t = threading.Thread(target=push_data, args=(data_list,))
t.start()
# 从队列中获取数据并处理
while True:
try:
data = data_queue.get(timeout=1)
except queue.Empty:
if not t.is_alive():
break
else:
continue
# 提交任务到线程池
future = executor.submit(process_data, data)
future.add_done_callback(lambda f: f.result())
t.join()
```
在这个代码中,我们将数据存储在一个普通的列表中,用一个专门的线程 `push_data` 来将数据逐一放入队列中。主线程不断从队列中获取数据并处理,如果队列为空并且 `push_data` 线程已经结束,则主线程也结束。这样就可以避免使用 `Event` 对象了。
cls.params["folderId"] = folder_id res = requests.get(url=cls.url, params=cls.params) js_data = json.loads(res.text)["data"] js_data_folders: list[dict] = js_data["FoldersInfo"] js_data_files: list[dict] = js_data["FilesInfo"] df = pd.concat([df, pd.DataFrame(js_data_files)], axis=0) ft = pd.concat([ft, pd.DataFrame(js_data_folders)], axis=0) folders_to_process = js_data_folders.copy() while folders_to_process: folder_id = folders_to_process.pop(0)["FolderId"] cls.params["folderId"] = folder_id res = requests.get(url=cls.url, params=cls.params) js_data = json.loads(res.text)["data"] js_data_folders: list[dict] = js_data["FoldersInfo"] js_data_files: list[dict] = js_data["FilesInfo"] df = pd.concat([df, pd.DataFrame(js_data_files)], axis=0) ft = pd.concat([ft, pd.DataFrame(js_data_folders)], axis=0) folders_to_process.extend(js_data_folders) return df, ft 优化这段代码
这段代码已经进行了一些优化,但是还有一些可以改进的地方:
1. 需要确保请求返回的数据格式和结构是正确的,否则可能会导致代码出错。可以添加一些异常处理机制,例如使用 try-except 捕获异常并记录错误日志。
2. 对于返回的数据,可以使用 data.get("FoldersInfo", []) 和 data.get("FilesInfo", []) 来获取需要的信息,这样可以避免出现 Key Error 的问题。
3. 可以使用列表推导式来简化代码,例如使用 [x["FolderId"] for x in js_data_folders] 来获取所有文件夹的 ID。
下面是一个可能的优化方案:
```python
def get_all_file_info(cls, folder_id, df, ft):
"""
获取指定文件夹及其子文件夹中的所有文件和文件夹信息
:param cls: 类实例
:param folder_id: 文件夹 ID
:param df: 文件信息 DataFrame
:param ft: 文件夹信息 DataFrame
:return: 文件信息 DataFrame 和文件夹信息 DataFrame
"""
try:
cls.params["folderId"] = folder_id
res = requests.get(url=cls.url, params=cls.params)
res.raise_for_status()
data = json.loads(res.text)["data"]
except (requests.HTTPError, ValueError) as e:
logging.error(f"Failed to get file info for folder {folder_id}: {e}")
return df, ft
js_data_folders = data.get("FoldersInfo", [])
js_data_files = data.get("FilesInfo", [])
df = pd.concat([df, pd.DataFrame(js_data_files)], axis=0)
ft = pd.concat([ft, pd.DataFrame(js_data_folders)], axis=0)
folders_to_process = [x["FolderId"] for x in js_data_folders]
while folders_to_process:
folder_id = folders_to_process.pop(0)
try:
cls.params["folderId"] = folder_id
res = requests.get(url=cls.url, params=cls.params)
res.raise_for_status()
data = json.loads(res.text)["data"]
except (requests.HTTPError, ValueError) as e:
logging.error(f"Failed to get file info for folder {folder_id}: {e}")
continue
js_data_folders = data.get("FoldersInfo", [])
js_data_files = data.get("FilesInfo", [])
df = pd.concat([df, pd.DataFrame(js_data_files)], axis=0)
ft = pd.concat([ft, pd.DataFrame(js_data_folders)], axis=0)
folders_to_process.extend([x["FolderId"] for x in js_data_folders])
return df, ft
```
这个优化方案添加了异常处理机制,使用了 data.get() 方法来获取需要的信息,并使用了列表推导式来获取所有文件夹的 ID。如果请求出错,会记录错误日志并跳过当前文件夹的处理。
阅读全文