Iteration 0, inertia 48.28000000000004 Iteration 1, inertia 44.696473738123075 Iteration 2, inertia 43.41711870487713 Iteration 3, inertia 42.15005849348029 Iteration 4, inertia 40.09543442952251 Iteration 5, inertia 38.46786004488347 Iteration 6, inertia 37.93460776717187 Iteration 7, inertia 37.43030635811263
时间: 2024-04-04 07:32:07 浏览: 78
这段代码是KMeans算法的迭代过程,每一次迭代都会输出当前的迭代次数和对应的SSE(误差平方和)值。KMeans算法的迭代过程是一个不断优化聚类结果的过程,每次迭代都会重新计算簇中心点,并将每个样本点划分到距离最近的簇中心点所在的簇中,直到满足迭代停止阈值或达到最大迭代次数为止。
在这段代码中,迭代次数从0开始,每次迭代会输出当前的SSE值。可以看到,随着迭代次数的增加,SSE值不断减小,说明聚类结果在不断优化。当SSE值变化小于设定的阈值或者达到最大迭代次数时,算法停止迭代,输出最终的聚类结果。
相关问题
设计求解下列优化问题的PSO算法:minf(x)=x1**2+x2**2+25*(sin(x1)**2+sin(x2)**2),-3<=xi<=3,
以下是使用粒子群优化算法(PSO)求解优化问题的代码示例:
```python
import numpy as np
def objective_function(x):
return x[0]**2 + x[1]**2 + 25*(np.sin(x[0])**2 + np.sin(x[1])**2)
def pso_algorithm():
# 参数设置
num_particles = 50 # 粒子数量
num_dimensions = 2 # 维度数量
max_iterations = 100 # 最大迭代次数
inertia_weight = 0.7 # 惯性权重
cognitive_weight = 1.4 # 认知权重
social_weight = 1.4 # 社会权重
# 初始化粒子位置和速度
particles_position = np.random.uniform(low=-3, high=3, size=(num_particles, num_dimensions))
particles_velocity = np.zeros((num_particles, num_dimensions))
# 初始化全局最优解和对应的适应度值
global_best_position = np.zeros(num_dimensions)
global_best_fitness = float('inf')
# 迭代优化
for iteration in range(max_iterations):
for i in range(num_particles):
# 计算粒子的适应度值
fitness = objective_function(particles_position[i])
# 更新个体最优解
if fitness < global_best_fitness:
global_best_fitness = fitness
global_best_position = particles_position[i]
# 更新粒子速度和位置
particles_velocity[i] = (inertia_weight * particles_velocity[i] +
cognitive_weight * np.random.rand() * (particles_position[i] - particles_position[i]) +
social_weight * np.random.rand() * (global_best_position - particles_position[i]))
particles_position[i] += particles_velocity[i]
# 限制粒子位置在范围内
particles_position[i] = np.clip(particles_position[i], -3, 3)
return global_best_position, global_best_fitness
# 调用PSO算法求解优化问题
best_position, best_fitness = pso_algorithm()
print("最优解:", best_position)
print("最优解对应的适应度值:", best_fitness)
```
补充上述代码中的布谷鸟算法和粒子群算法,其中布谷鸟算法的步长在0.9~1.0,突变概率为0.05~0.25,候选解数为25,最大迭代次数为100.粒子群算法的参数采用最常用的默认值。
下面是补充了布谷鸟算法和粒子群算法的代码:
```python
import numpy as np
import matplotlib.pyplot as plt# 初始化传感器和锚节点的
num_sensors = 100
num_anchors = 30
sensor_positions = np.random.rand(num_sensors, 2) * 100
anchor_positions = np.random.rand(num_anchors, 2) * 100
# 布谷鸟算法优化传感器定位
def cuckoo_search(sensor_positions, anchor_positions, step_size_min=0.9, step_size_max=1.0, mutation_prob_min=0.05, mutation_prob_max=0.25, num_candidates=25, max_iterations=100):
num_sensors = sensor_positions.shape[0]
dim = sensor_positions.shape[1]
best_solution = sensor_positions.copy()
best_fitness = np.inf
for iteration in range(max_iterations):
# 生成候选解
candidates = []
for i in range(num_candidates):
candidate = sensor_positions.copy()
step_size = np.random.uniform(step_size_min, step_size_max)
mutation_prob = np.random.uniform(mutation_prob_min, mutation_prob_max)
candidate += step_size * np.random.randn(num_sensors, dim)
candidate = np.clip(candidate, 0, 100) # 限制在范围内
mask = np.random.rand(num_sensors, dim) < mutation_prob
candidate[mask] = np.random.rand(np.sum(mask)) * 100
candidates.append(candidate)
# 计算适应度函数值
fitness_values = np.linalg.norm(candidates - anchor_positions[:, np.newaxis], axis=2).sum(axis=0)
# 选择最好的解
best_index = np.argmin(fitness_values)
if fitness_values[best_index] < best_fitness:
best_solution = candidates[best_index]
best_fitness = fitness_values[best_index]
return best_solution
# 粒子群算法优化传感器定位
def particle_swarm_optimization(sensor_positions, anchor_positions, num_particles=100, max_iterations=100, inertia_weight=0.5, cognitive_weight=0.5, social_weight=0.5):
num_sensors = sensor_positions.shape[0]
dim = sensor_positions.shape[1]
positions = sensor_positions.copy()
velocities = np.zeros((num_particles, num_sensors, dim))
best_positions = positions.copy()
best_fitness = np.inf
global_best_position = positions[0].copy()
for iteration in range(max_iterations):
for i in range(num_particles):
# 更新速度
velocities[i] = (inertia_weight * velocities[i] +
cognitive_weight * np.random.rand() * (best_positions[i] - positions[i]) +
social_weight * np.random.rand() * (global_best_position - positions[i]))
# 更新位置
positions[i] += velocities[i]
positions[i] = np.clip(positions[i], 0, 100) # 限制在范围内
# 计算适应度函数值
fitness_value = np.linalg.norm(positions[i] - anchor_positions, axis=1).sum()
# 更新个体最优解和全局最优解
if fitness_value < np.linalg.norm(best_positions[i] - anchor_positions, axis=1).sum():
best_positions[i] = positions[i].copy()
if fitness_value < np.linalg.norm(global_best_position - anchor_positions, axis=1).sum():
global_best_position = positions[i].copy()
return global_best_position
# 优化传感器定位
optimized_sensor_positions = cuckoo_search(sensor_positions, anchor_positions)
optimized_sensor_positions = particle_swarm_optimization(optimized_sensor_positions, anchor_positions)
# 绘制定位前后的节点分布图
plt.scatter(sensor_positions[:, 0], sensor_positions[:, 1], label='Before Optimization')
plt.scatter(optimized_sensor_positions[:, 0], optimized_sensor_positions[:, 1], label='After Optimization')
plt.scatter(anchor_positions[:, 0], anchor_positions[:, 1], label='Anchors')
plt.legend()
plt.show()
# 计算定位误差值
error = np.linalg.norm(optimized_sensor_positions - sensor_positions, axis=1)
average_error = np.mean(error)
print('Average localization error:', average_error)
```
请注意,以上代码是一个简化的实现,参数的选择可能需要根据实际问题进行调整。同时,布谷鸟算法和粒子群算法的性能也受到参数设置的影响,可能需要通过实验进行调优。
阅读全文