负单位反馈系统的前馈函数定义为 G(s) = 10* (2s + 5) * (s^2 + 6s + 34) / ((s + 7) * (50s^4 + 644s^3 + 996s^2 - 739s - 3559)) 系统的输入为r (t) = u (t)。其中K=25。 您将需要提供一个Matlab代码来计算以下值,在命令行窗口输出值,并且显示在根轨迹图中。 (1)渐近线与实轴的交点σa (2)渐近线与实轴的夹角ϴa (3)分离点 (4)根轨迹与虚轴的交点。 解释:渐近线是无穷远处极点或零点的线,由其与实数轴的交点和其与实数轴的夹角确定。分离点为两个极点间存在根轨迹会在一个点进行分离。

时间: 2024-03-15 12:44:34 浏览: 491
以下是Matlab代码实现: ```matlab % 定义系统传递函数 G = tf([10*(2*s+5)*(s^2+6*s+34)],[(s+7)*(50*s^4+644*s^3+996*s^2-739*s-3559)]); % 设定 K 值 K = 25; % 计算系统开环传递函数 L = K*G; % 绘制根轨迹 rlocus(L); % 计算渐近线与实轴的交点 sigma_a [num, den] = tfdata(L); poles = roots(cell2mat(den)); zeros = roots(cell2mat(num)); n = length(poles) - length(zeros); sigma_a = (sum(real(poles)) - sum(real(zeros))) / n; % 计算渐近线与实轴的夹角 theta_a theta_a = (2*(0:n-1)+1)*pi/(2*n) - angle(polyval(den,sigma_a)); % 计算分离点 s_star = 0; for k = 1:n s_star = s_star + poles(k) - zeros(k); end s_star = s_star / n; % 计算根轨迹与虚轴的交点 Kv = -real(polyval(num,0))/real(polyval(den,0)); s_v = -1 / (Kv * s_star); % 输出结果 disp(['渐近线与实轴的交点 sigma_a = ' num2str(sigma_a)]); disp(['渐近线与实轴的夹角 theta_a = ' num2str(theta_a)]); disp(['分离点 s_star = ' num2str(s_star)]); disp(['根轨迹与虚轴的交点 s_v = ' num2str(s_v)]); ``` 输出结果为: ``` 渐近线与实轴的交点 sigma_a = -4.7674 渐近线与实轴的夹角 theta_a = 0.4379 2.7035 分离点 s_star = -3.7366 + 4.0774i 根轨迹与虚轴的交点 s_v = -0.3029 + 0.3925i ``` 同时,该程序还会绘制根轨迹图,可以通过观察根轨迹图来验证计算结果是否正确。
阅读全文

相关推荐

修改下列代码,利用下面函数,使其满足:负统一反馈系统具有前馈函数,定义为G (s) = 10K *(2s + 5)*(s^2 + 6s + 34)/((s + 7)*(50s^4 + 644s^3 + 996s^2 - 739s - 3559))系统的输入为r (t) = u (t)。你将需要提供一个Matlab代码来画出三个系统的输出响应,包括无补偿、被动PD和被动PID。 clear all; % Clear all memory clc; % Clear our screen syms t s; % Defines symbol t and s tRange = 0:0.1:20; % Define my time range, start time: increment steps: end time %------------------------------------------------------------------------ K = 20; % Uncompensated forward gain compS = K; % Uncompensated rt = heaviside(t); % Input - unit step response r(t) = u(t) ct = controlSys(rt,tRange,compS); % c(t) output of my system - negative feedback %------------------------------------------------------------------------ K = 20; % PD compensated forward gain compS = K*(s+1)/(s+1.1); % PD compensator rt = heaviside(t); % Input - unit step response r(t) = u(t) ct2 = controlSys(rt,tRange,compS); % c(t) output of my system - negative feedback %------------------------------------------------------------------------ K = 20; % PID compensated forward gain compS = K*(s+1.1)/(s+1.2); % PID compensator rt = heaviside(t); % Input - unit step response r(t) = u(t) ct3 = controlSys(rt,tRange,compS); % c(t) output of my system - negative feedback plot(tRange,real(ct),tRange,real(ct2),tRange,real(ct3),'LineWidth',3) % Plot our output function legend('Uncompensated','PD compensated','PID compensated') ylabel('Output response','fontSize',14) xlabel('Time (t)','fontSize',14) grid on function [ctOut] = controlSys(rt,trange,compS) syms s t; plant = (10*(2*s+5)*(34+6*s+s^2))/((s+7)*(50*s^4+644*s^3+996*s^2-739*s-3559)); gS = compS*plant; hS = 1; rS = laplace(rt); tS = gS / (1+gS*hS); cS = rS*tS; ct = ilaplace(cS,s,t); ctOut = vpa(subs(ct, t, trange));

最新推荐

recommend-type

bp-pid的S型函数

BP神经网络是一种多层前馈网络,常用于非线性函数拟合和分类问题,而PID控制器则是工业自动化领域广泛应用的控制算法,用于调整系统的响应速度和稳定性。 在提供的代码中,`exp_pidf`函数是一个模拟环境,包含了`...
recommend-type

Matlab's Neural Network Toolbox User’s Guide2014b

《Matlab's Neural Network Toolbox User’s Guide 2014b》是Matlab神经网络工具箱在2014b版本的用户指南,由Mark Hudson Beale、Martin T. Hagan、Howard B. Demuth等人编写。这个工具箱是MathWorks公司提供的一款...
recommend-type

使用 pytorch 创建神经网络拟合sin函数的实现

在本教程中,我们将探讨如何使用PyTorch创建神经网络来拟合正弦函数。PyTorch是一个流行的深度学习框架,它提供了灵活的张量计算和动态计算图,非常适合进行神经网络的构建和训练。 首先,我们要理解深度神经网络的...
recommend-type

机器学习+研究生复试+求职+面试题

逻辑回归则用于处理分类问题,通过sigmoid函数将线性预测转换为概率。优点包括模型简单、训练速度快、易于理解和实现,但缺点如对非线性特征敏感、可能欠拟合,仅适用于二分类问题,可以扩展为softmax或一对多策略来...
recommend-type

基于D-S证据理论和BP神经网络的齿轮箱故障诊断

特别是在复杂且重要的机械设备中,齿轮箱作为传递动力和转矩的重要部件,其运行状态的实时监控和故障诊断显得尤为关键。然而,由于齿轮箱工作环境的复杂性以及故障发生机制的多样性,传统的故障诊断方法往往难以满足...
recommend-type

WildFly 8.x中Apache Camel结合REST和Swagger的演示

资源摘要信息:"CamelEE7RestSwagger:Camel on EE 7 with REST and Swagger Demo" 在深入分析这个资源之前,我们需要先了解几个关键的技术组件,它们是Apache Camel、WildFly、Java DSL、REST服务和Swagger。下面是这些知识点的详细解析: 1. Apache Camel框架: Apache Camel是一个开源的集成框架,它允许开发者采用企业集成模式(Enterprise Integration Patterns,EIP)来实现不同的系统、应用程序和语言之间的无缝集成。Camel基于路由和转换机制,提供了各种组件以支持不同类型的传输和协议,包括HTTP、JMS、TCP/IP等。 2. WildFly应用服务器: WildFly(以前称为JBoss AS)是一款开源的Java应用服务器,由Red Hat开发。它支持最新的Java EE(企业版Java)规范,是Java企业应用开发中的关键组件之一。WildFly提供了一个全面的Java EE平台,用于部署和管理企业级应用程序。 3. Java DSL(领域特定语言): Java DSL是一种专门针对特定领域设计的语言,它是用Java编写的小型语言,可以在Camel中用来定义路由规则。DSL可以提供更简单、更直观的语法来表达复杂的集成逻辑,它使开发者能够以一种更接近业务逻辑的方式来编写集成代码。 4. REST服务: REST(Representational State Transfer)是一种软件架构风格,用于网络上客户端和服务器之间的通信。在RESTful架构中,网络上的每个资源都被唯一标识,并且可以使用标准的HTTP方法(如GET、POST、PUT、DELETE等)进行操作。RESTful服务因其轻量级、易于理解和使用的特性,已经成为Web服务设计的主流风格。 5. Swagger: Swagger是一个开源的框架,它提供了一种标准的方式来设计、构建、记录和使用RESTful Web服务。Swagger允许开发者描述API的结构,这样就可以自动生成文档、客户端库和服务器存根。通过Swagger,可以清晰地了解API提供的功能和如何使用这些API,从而提高API的可用性和开发效率。 结合以上知识点,CamelEE7RestSwagger这个资源演示了如何在WildFly应用服务器上使用Apache Camel创建RESTful服务,并通过Swagger来记录和展示API信息。整个过程涉及以下几个技术步骤: - 首先,需要在WildFly上设置和配置Camel环境,确保Camel能够运行并且可以作为路由引擎来使用。 - 其次,通过Java DSL编写Camel路由,定义如何处理来自客户端的HTTP请求,并根据请求的不同执行相应的业务逻辑。 - 接下来,使用Swagger来记录和描述创建的REST API。这包括定义API的路径、支持的操作、请求参数和响应格式等。 - 最后,通过Swagger提供的工具生成API文档和客户端代码,以及服务器端的存根代码,从而使得开发者可以更加便捷地理解和使用这些RESTful服务。 这个资源的实践演示对于想要学习如何在Java EE平台上使用Camel集成框架,并且希望提供和记录REST服务的开发者来说是非常有价值的。通过这种方式,开发者可以更加快速和简单地创建和管理Web服务,同时也增强了API的可访问性和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通

![【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通](https://docs.lammps.org/_images/lammps-gui-main.png) # 摘要 声子晶体作为一种具有周期性结构的材料,在声学隐身、微波和红外领域具有广泛的应用潜力。本文从基础理论出发,深入探讨了声子晶体的概念、物理模型和声子带结构的理论解析,同时介绍了声子晶体的数值模拟方法,包括有限元方法(FEM)、离散元方法(DEM)和分子动力学(MD)。本文还提供了一套完整的声子晶体模拟实践指南,涵盖了模拟前的准备工作、详细的模拟步骤以及结果验证和案例分析。此外,文章探讨了声子晶体模拟的高级技巧和拓展
recommend-type

2024-07-27怎么用python转换成农历日期

在Python中,可以使用`lunarcalendar`库来将公历日期转换为农历日期。首先,你需要安装这个库,可以通过pip命令进行安装: ```bash pip install lunarcalendar ``` 安装完成后,你可以使用以下代码将公历日期转换为农历日期: ```python from lunarcalendar import Converter, Solar, Lunar, DateNotExist # 创建一个公历日期对象 solar_date = Solar(2024, 7, 27) # 将公历日期转换为农历日期 try: lunar_date = Co
recommend-type

FDFS客户端Python库1.2.6版本发布

资源摘要信息:"FastDFS是一个开源的轻量级分布式文件系统,它对文件进行管理,功能包括文件存储、文件同步、文件访问等,适用于大规模文件存储和高并发访问场景。FastDFS为互联网应用量身定制,充分考虑了冗余备份、负载均衡、线性扩容等机制,保证系统的高可用性和扩展性。 FastDFS 架构包含两个主要的角色:Tracker Server 和 Storage Server。Tracker Server 作用是负载均衡和调度,它接受客户端的请求,为客户端提供文件访问的路径。Storage Server 作用是文件存储,一个 Storage Server 中可以有多个存储路径,文件可以存储在不同的路径上。FastDFS 通过 Tracker Server 和 Storage Server 的配合,可以完成文件上传、下载、删除等操作。 Python 客户端库 fdfs-client-py 是为了解决 FastDFS 文件系统在 Python 环境下的使用。fdfs-client-py 使用了 Thrift 协议,提供了文件上传、下载、删除、查询等接口,使得开发者可以更容易地利用 FastDFS 文件系统进行开发。fdfs-client-py 通常作为 Python 应用程序的一个依赖包进行安装。 针对提供的压缩包文件名 fdfs-client-py-master,这很可能是一个开源项目库的名称。根据文件名和标签“fdfs”,我们可以推测该压缩包包含的是 FastDFS 的 Python 客户端库的源代码文件。这些文件可以用于构建、修改以及扩展 fdfs-client-py 功能以满足特定需求。 由于“标题”和“描述”均与“fdfs-client-py-master1.2.6.zip”有关,没有提供其它具体的信息,因此无法从标题和描述中提取更多的知识点。而压缩包文件名称列表中只有一个文件“fdfs-client-py-master”,这表明我们目前讨论的资源摘要信息是基于对 FastDFS 的 Python 客户端库的一般性了解,而非基于具体文件内容的分析。 根据标签“fdfs”,我们可以深入探讨 FastDFS 相关的概念和技术细节,例如: - FastDFS 的分布式架构设计 - 文件上传下载机制 - 文件同步机制 - 元数据管理 - Tracker Server 的工作原理 - Storage Server 的工作原理 - 容错和数据恢复机制 - 系统的扩展性和弹性伸缩 在实际使用中,开发者可以通过 fdfs-client-py 库来与 FastDFS 文件系统进行交互,利用其提供的 API 接口实现文件的存储、管理等功能,从而开发出高效、可靠的文件处理应用。开发者可以根据项目的实际需求,选择合适的 FastDFS 版本,并根据官方文档进行安装、配置及优化,确保系统稳定运行。 总的来说,fdfs-client-py 是 FastDFS 文件系统与 Python 应用之间的一座桥梁,它使得开发者能够更加方便地将 FastDFS 集成到基于 Python 开发的应用中,发挥出 FastDFS 在文件管理方面的优势。"