%PID Feedforward Controler clear all; close all; ts=0.001; sys=tf(133,[1,25,0]); dsys=c2d(sys,ts,'z'); [num,den]=tfdata(dsys,'v'); u_1=0;u_2=0; y_1=0;y_2=0; error_1=0;ei=0; for k=1:1:1000 time(k)=k*ts; A=0.5;F=3.0; yd(k)=A*sin(F*2*pi*k*ts); dyd(k)=A*F*2*pi*cos(F*2*pi*k*ts); ddyd(k)=-A*F*2*pi*F*2*pi*sin(F*2*pi*k*ts); %Linear model y(k)=-den(2)*y_1-den(3)*y_2+num(2)*u_1+num(3)*u_2; error(k)=yd(k)-y(k); ei=ei+error(k)*ts; up(k)=80*error(k)+20*ei+2.0*(error(k)-error_1)/ts; uf(k)=25/133*dyd(k)+1/133*ddyd(k); M=2; if M==1 %Only using PID u(k)=up(k); elseif M==2 %PID+Feedforward u(k)=up(k)+uf(k); end if u(k)>=10 u(k)=10; end if u(k)<=-10 u(k)=-10; end u_2=u_1;u_1=u(k); y_2=y_1;y_1=y(k); error_1=error(k); end figure(1); subplot(211); plot(time,yd,'r',time,y,'k:','linewidth',2); xlabel('time(s)');ylabel('yd,y'); legend('Ideal position signal','Position tracking'); subplot(212); plot(time,error,'r','linewidth',2); xlabel('time(s)');ylabel('error'); figure(2); plot(time,up,'k',time,uf,'b',time,u,'r','linewidth',2); xlabel('time(s)');ylabel('up,uf,u');注释这段代码

时间: 2024-02-20 20:02:43 浏览: 127
RAR

学习PID控制的一个演示

star5星 · 资源好评率100%
这段代码实现了一个基于 PID 控制器和前馈补偿的控制系统。具体来说,它包括以下几个部分: 1. 系统建模:首先定义一个连续系统模型 sys,其中传递函数为 133/(s^2 + 25s),然后使用 c2d 函数将其离散化得到离散系统模型 dsys。 ``` sys=tf(133,[1,25,0]); dsys=c2d(sys,ts,'z'); [num,den]=tfdata(dsys,'v'); ``` 2. 反馈控制器:利用 PID 控制器实现反馈控制。在每个时刻 k,通过测量系统输出 y(k) 与期望输出 yd(k) 之间的误差,计算出控制器输出 u(k)。 ``` error(k)=yd(k)-y(k); ei=ei+error(k)*ts; up(k)=80*error(k)+20*ei+2.0*(error(k)-error_1)/ts; ``` 其中,ei 表示误差的积分项,error_1 表示上一个时刻的误差。这里的 PID 控制器系数是手动调整得到的,可以根据实际应用需要进行调整。 3. 前馈补偿:为了进一步提高系统的跟踪性能,引入了前馈补偿。在每个时刻 k,通过测量期望输出 yd(k) 的变化率 dyd(k) 和加速度 ddyd(k),计算出前馈控制器输出 uf(k)。 ``` uf(k)=25/133*dyd(k)+1/133*ddyd(k); ``` 其中,系数 25/133 和 1/133 是根据系统模型得到的,可以根据实际应用需要进行调整。 4. 控制器输出求和:最终的控制器输出 u(k) 是反馈控制器输出 up(k) 和前馈控制器输出 uf(k) 的加权和,即 ``` u(k)=up(k)+uf(k); ``` 可以通过设置变量 M 来选择是否使用前馈补偿。当 M=1 时,只使用 PID 控制器;当 M=2 时,使用 PID 控制器和前馈补偿。 5. 限幅:为了保证控制信号 u(k) 的安全性,引入了限幅,将 u(k) 限制在 [-10, 10] 的范围内。 ``` if u(k)>=10 u(k)=10; end if u(k)<=-10 u(k)=-10; end ``` 6. 数据保存和显示:最后,将仿真结果保存并绘制图像,包括期望输出 yd(k)、实际输出 y(k)、误差 error(k)、控制器输出 up(k)、前馈控制器输出 uf(k) 和总输出信号 u(k)。 ``` time(k)=k*ts; A=0.5;F=3.0; yd(k)=A*sin(F*2*pi*k*ts); dyd(k)=A*F*2*pi*cos(F*2*pi*k*ts); ddyd(k)=-A*F*2*pi*F*2*pi*sin(F*2*pi*k*ts); y(k)=-den(2)*y_1-den(3)*y_2+num(2)*u_1+num(3)*u_2; figure(1); subplot(211); plot(time,yd,'r',time,y,'k:','linewidth',2); xlabel('time(s)');ylabel('yd,y'); legend('Ideal position signal','Position tracking'); subplot(212); plot(time,error,'r','linewidth',2); xlabel('time(s)');ylabel('error'); figure(2); plot(time,up,'k',time,uf,'b',time,u,'r','linewidth',2); xlabel('time(s)');ylabel('up,uf,u'); ``` 这里使用了 sin 函数生成了一个正弦波作为期望输出信号 yd(k),然后通过离散系统模型计算出实际输出 y(k)。最后,使用 subplot 和 plot 函数绘制了两幅图,分别显示了期望输出 yd(k)、实际输出 y(k)、误差 error(k) 和控制器输出 up(k)、前馈控制器输出 uf(k) 和总输出信号 u(k)。
阅读全文

相关推荐

最新推荐

recommend-type

ANC工具使用说明(1).docx

* aud_channel_cfg:麦克风的通道位置,对应有左前、右前、左后、右后四种物理通道,分别对应软件通道0/1/2/3/4。 * coef_length:滤波器的长度,不要改动。 * Diff:喇叭差分输出或单端输出的开关,true为喇叭差分...
recommend-type

SR3 - Image Super-Resolution via Iterative Refinement.pdf

传统的超分辨率方法,如基于回归的卷积神经网络(feedforward convolutional nets),可能在低放大倍数下工作良好,但在处理高放大倍数时往往无法生成具有高保真度细节的图像,因为输入图像与多个高分辨率图像可能...
recommend-type

毕业设计&课设_百脑汇商城管理系统:Java 毕设项目.zip

该资源内项目源码是个人的课程设计、毕业设计,代码都测试ok,都是运行成功后才上传资源,答辩评审平均分达到96分,放心下载使用! ## 项目备注 1、该资源内项目代码都经过严格测试运行成功才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.md文件(如有),仅供学习参考, 切勿用于商业用途。
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略

![【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略](https://cdn.codeground.org/nsr/images/img/researchareas/ai-article4_02.png) # 1. 强化学习中的损失函数基础 强化学习(Reinforcement Learning, RL)是机器学习领域的一个重要分支,它通过与环境的互动来学习如何在特定任务中做出决策。在强化学习中,损失函数(loss function)起着至关重要的作用,它是学习算法优化的关键所在。损失函数能够衡量智能体(agent)的策略(policy)表现,帮助智能体通过减少损失来改进自