1.创建一个给定带权连通网络。\n2.实现prim算法求解该图的一棵最小生成树。\n3.实现dijkstra算法求解图中从某一原点出发至其余所有顶点的最短路径(给出最短路径长度及最短路径上所经过的顶点)。
时间: 2023-05-04 08:00:22 浏览: 125
1. 创建一个给定带权连通网络。
2. 实现Prim算法求解该图的一棵最小生成树。
3. 实现Dijkstra算法求解图中从某一原点出发至其余所有顶点的最短路径(给出最短路径长度及最短路径上所经过的顶点)。
相关问题
实验题2:采用普里姆算法求最小生成树 (一)实验目的:领会普里姆算法求带权连通图中最小生成树的过程和相关算法设计。 (二)实验内容:编写一个程序exp4-2.cpp,实现求带权连通图最小生成树的普里姆算法。对于如图2所示的带权连通图,输出从顶点0出发的一棵最小生成树。 其中exp4-2.cpp程序中包含如下函数: Prim(g,v):采用普里姆算法输出图g中从顶点v出发的一颗最小生成树
以下是exp4-2.cpp的程序代码,实现了求带权连通图最小生成树的普里姆算法,对于给定的带权连通图,输出从顶点0出发的一棵最小生成树。
```c++
#include <iostream>
#include <vector>
#include <queue>
#include <utility>
#include <cstring>
using namespace std;
const int MAXN = 10005;
const int INF = 0x3f3f3f3f;
struct Edge {
int to, w;
Edge(int _to, int _w) : to(_to), w(_w) {}
};
vector<Edge> G[MAXN];
int dis[MAXN];
bool vis[MAXN];
int Prim(int n, int s) {
memset(vis, false, sizeof(vis));
memset(dis, INF, sizeof(dis));
dis[s] = 0;
priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>> pq;
pq.push(make_pair(0, s));
int ans = 0;
while (!pq.empty()) {
pair<int, int> cur = pq.top();
pq.pop();
int u = cur.second;
if (vis[u]) continue;
vis[u] = true;
ans += cur.first;
for (int i = 0; i < G[u].size(); i++) {
int v = G[u][i].to;
int w = G[u][i].w;
if (!vis[v] && dis[v] > w) {
dis[v] = w;
pq.push(make_pair(dis[v], v));
}
}
}
return ans;
}
int main() {
int n = 7;
G[0].push_back(Edge(1, 7));
G[0].push_back(Edge(3, 5));
G[1].push_back(Edge(0, 7));
G[1].push_back(Edge(2, 8));
G[1].push_back(Edge(3, 9));
G[1].push_back(Edge(4, 7));
G[2].push_back(Edge(1, 8));
G[2].push_back(Edge(4, 5));
G[3].push_back(Edge(0, 5));
G[3].push_back(Edge(1, 9));
G[3].push_back(Edge(4, 15));
G[3].push_back(Edge(5, 6));
G[4].push_back(Edge(1, 7));
G[4].push_back(Edge(2, 5));
G[4].push_back(Edge(3, 15));
G[4].push_back(Edge(5, 8));
G[4].push_back(Edge(6, 9));
G[5].push_back(Edge(3, 6));
G[5].push_back(Edge(4, 8));
G[5].push_back(Edge(6, 11));
G[6].push_back(Edge(4, 9));
G[6].push_back(Edge(5, 11));
int ans = Prim(n, 0);
cout << ans << endl;
return 0;
}
```
程序运行结果如下:
```
39
```
其中,39是从顶点0出发的带权连通图的最小生成树的权值。
编写一个程序exp4-2.cpp,实现求带权连通图最小生成树的普里姆算法。对于如图2所示的带权连通图,输出从顶点0出发的一棵最小生成树。 其中exp4-2.cpp程序中包含如下函数: Prim(g,v):采用普里姆算法输出图g中从顶点v出发的一颗最小生成树。
好的,以下是exp4-2.cpp的代码:
```c++
#include <iostream>
#include <vector>
#include <queue>
using namespace std;
const int MAXN = 100; // 最大节点数
struct Edge {
int to, w; // 边的终点和权值
Edge(int to, int w) : to(to), w(w) {}
};
vector<Edge> g[MAXN]; // 邻接表存储图
bool vis[MAXN]; // 记录每个节点是否被访问过
// 从顶点v开始,采用普里姆算法输出最小生成树
void Prim(vector<Edge> g[], int v) {
priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>> pq;
pq.push({0, v}); // 将起始点加入堆中
int res = 0; // 记录最小生成树的总权值
while (!pq.empty()) {
int u = pq.top().second;
int w = pq.top().first;
pq.pop();
if (vis[u]) continue;
vis[u] = true;
res += w;
cout << "加入节点 " << u << ", 权值为 " << w << endl;
for (auto e : g[u]) {
int v = e.to, w = e.w;
if (!vis[v]) pq.push({w, v});
}
}
cout << "最小生成树的总权值为 " << res << endl;
}
int main() {
g[0].push_back(Edge(1, 1));
g[0].push_back(Edge(2, 3));
g[1].push_back(Edge(0, 1));
g[1].push_back(Edge(2, 1));
g[1].push_back(Edge(3, 6));
g[2].push_back(Edge(0, 3));
g[2].push_back(Edge(1, 1));
g[2].push_back(Edge(3, 1));
g[2].push_back(Edge(4, 5));
g[3].push_back(Edge(1, 6));
g[3].push_back(Edge(2, 1));
g[3].push_back(Edge(4, 2));
g[4].push_back(Edge(2, 5));
g[4].push_back(Edge(3, 2));
Prim(g, 0);
return 0;
}
```
该程序采用邻接表存储图,用一个bool数组vis记录每个节点是否被访问过。函数Prim采用堆优化的方式实现普里姆算法,其中priority_queue用于维护未被加入生成树的节点,pair<int, int>表示边的权值和终点,greater<pair<int, int>>表示按照边的权值从小到大排序。程序中给出了一个简单的带权连通图,从顶点0开始求一棵最小生成树。
阅读全文