用matlap编写复合辛普森公式和编写复合梯形公式
时间: 2024-03-25 12:41:59 浏览: 73
以下是使用 Matlab 编写的复合辛普森公式和复合梯形公式的通用程序:
复合辛普森公式:
```
function I = simpson(f, a, b, n)
% 复合辛普森公式的通用程序
% f: 被积函数
% a: 积分下限
% b: 积分上限
% n: 小区间数量
% I: 积分结果
h = (b - a) / n;
x = linspace(a, b, n+1);
I = (h / 3) * (f(a) + f(b));
for i = 2:2:n
I = I + (h / 3) * 4 * f(x(i));
end
for i = 3:2:n-1
I = I + (h / 3) * 2 * f(x(i));
end
```
使用方法:
1. 将上述代码保存为 .m 文件,如 `simpson.m`。
2. 在 Matlab 中,定义被积函数 `f`、积分下限 `a`、积分上限 `b`、小区间数量 `n`。
3. 调用 `simpson` 函数,即可得到积分结果 `I`。例如,使用 `I = simpson(@(x) exp(-x.^2), 0, 1, 10)` 可以计算 $\int_0^1 e^{-x^2} dx$ 的积分结果。
复合梯形公式:
```
function I = trapezoidal(f, a, b, n)
% 复合梯形公式的通用程序
% f: 被积函数
% a: 积分下限
% b: 积分上限
% n: 小区间数量
% I: 积分结果
h = (b - a) / n;
x = linspace(a, b, n+1);
I = (h / 2) * (f(a) + f(b));
for i = 2:n
I = I + h * f(x(i));
end
```
使用方法:
1. 将上述代码保存为 .m 文件,如 `trapezoidal.m`。
2. 在 Matlab 中,定义被积函数 `f`、积分下限 `a`、积分上限 `b`、小区间数量 `n`。
3. 调用 `trapezoidal` 函数,即可得到积分结果 `I`。例如,使用 `I = trapezoidal(@(x) exp(-x.^2), 0, 1, 10)` 可以计算 $\int_0^1 e^{-x^2} dx$ 的积分结果。
阅读全文
相关推荐


















