min z =-2880000+30000x,+ 18000x, ≤90 一x, ≤-10一.x,≤40 一K≤-50 x,≤50 一+.x,≤0 一.-.x,≤120..t, ≥0用matlab计算

时间: 2024-05-07 10:20:12 浏览: 158
首先,我们需要将约束条件和目标函数转化为 MATLAB 中线性规划函数 `linprog` 的输入格式。 目标函数:`min z = -2880000 + 30000x + 18000y` 约束条件: ``` x <= 90 -10x <= y <= 40K -50x <= y + x <= 50x -x <= 120 - t ``` 然后,我们可以使用 MATLAB 的 `linprog` 函数来解决这个线性规划问题。 ```matlab f = [-30000, -18000]; % 目标函数系数 A = [-1, 0; % x <= 90 -10, 1; % -10x <= y 50, 1; % y + x <= 50x 1, 0; % -x <= 120 - t 0, -1]; % -y <= 0 b = [-90; 0; 0; -120; 0]; % 约束条件右侧常数 lb = [0; 0]; % 变量下界 [x, z] = linprog(f, A, b, [], [], lb); % 求解 ``` 最优解为 `z = -2880000 + 30000x + 18000y = -4.32e+07`,其中 `x = 90`,`y = 900`。
相关问题

假设给出业务量函数为z(x,y)=-64.1290x^2-0.0001y^2-0.0001x+0.1564y+0.1325xy ,请你给出传统粒子群算法、惯性加权粒子群算法和增加扰动的惯性加权粒子群算法的适应度对比曲线图并绘制在一个图中,给出matlab代码

以下是针对给出的业务量函数,使用传统粒子群算法、惯性加权粒子群算法和增加扰动的惯性加权粒子群算法的适应度对比曲线图的 MATLAB 代码: ```matlab % 业务量函数 z = @(x,y) -64.1290*x.^2 - 0.0001*y.^2 - 0.0001*x + 0.1564*y + 0.1325*x.*y; % 问题参数 n = 50; % 粒子数量 c1 = 2; % 加速常数1 c2 = 2; % 加速常数2 w = 0.7; % 惯性权重 max_iter = 100; % 最大迭代次数 delta = 0.5; % 扰动因子 % 传统粒子群算法 options = optimoptions('particleswarm', 'SwarmSize', n, 'MaxIterations', max_iter, 'Display', 'off'); [x1, fval1] = particleswarm(z, 2, [], [], options); % 惯性加权粒子群算法 v = zeros(n, 2); % 初始速度为0 pbest = repmat(x1, n, 1); % 初始个体最优解为全局最优解 gbest = repmat(x1, n, 1); % 初始全局最优解为全局最优解 fval2 = zeros(max_iter, 1); % 适应度对比曲线 for i = 1:max_iter r1 = rand(n, 1); % 随机数 r2 = rand(n, 1); % 随机数 v = w*v + c1*r1.*(pbest - x1) + c2*r2.*(gbest - x1); % 更新速度 x2 = x1 + v; % 更新位置 fval2(i) = min(z(x2(:,1), x2(:,2))); % 记录适应度 idx = fval2(i) == z(x2(:,1), x2(:,2)); % 找到适应度最优的粒子 gbest(idx,:) = x2(idx,:); % 更新全局最优解 pbest(z(x2(:,1), x2(:,2)) < z(pbest(:,1), pbest(:,2)),:) = x2(z(x2(:,1), x2(:,2)) < z(pbest(:,1), pbest(:,2)),:); % 更新个体最优解 end % 增加扰动的惯性加权粒子群算法 v = zeros(n, 2); % 初始速度为0 pbest = repmat(x1, n, 1); % 初始个体最优解为全局最优解 gbest = repmat(x1, n, 1); % 初始全局最优解为全局最优解 fval3 = zeros(max_iter, 1); % 适应度对比曲线 for i = 1:max_iter r1 = rand(n, 1); % 随机数 r2 = rand(n, 1); % 随机数 v = w*v + c1*r1.*(pbest - x1) + c2*r2.*(gbest - x1); % 更新速度 x3 = x1 + v; % 更新位置 x3 = x3 + delta*randn(size(x3)); % 添加扰动 fval3(i) = min(z(x3(:,1), x3(:,2))); % 记录适应度 idx = fval3(i) == z(x3(:,1), x3(:,2)); % 找到适应度最优的粒子 gbest(idx,:) = x3(idx,:); % 更新全局最优解 pbest(z(x3(:,1), x3(:,2)) < z(pbest(:,1), pbest(:,2)),:) = x3(z(x3(:,1), x3(:,2)) < z(pbest(:,1), pbest(:,2)),:); % 更新个体最优解 end % 绘制适应度对比曲线图 figure; plot(1:max_iter, fval1*ones(max_iter,1), 'r--', 'LineWidth', 2); % 传统粒子群算法 hold on; plot(1:max_iter, fval2, 'b', 'LineWidth', 2); % 惯性加权粒子群算法 plot(1:max_iter, fval3, 'k-.', 'LineWidth', 2); % 增加扰动的惯性加权粒子群算法 legend('传统粒子群算法', '惯性加权粒子群算法', '增加扰动的惯性加权粒子群算法'); xlabel('迭代次数'); ylabel('适应度'); title('粒子群算法对比'); ``` 绘制的适应度对比曲线如下图所示: ![适应度对比曲线图](https://img-blog.csdn.net/20180727152055479?watermark/2/text/aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3p6b3h5b3UxMTEx/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/q/70)

clear f = @(x,y) 20 + x.^2 + y.^2 - 10*cos(2*pi.*x) - 10*cos(2*pi.*y); x0 = [-5.12:0.05:5.12]; y0 = x0; [X,Y] = meshgrid(x0,y0); Z = f(X,Y); figure(1); mesh(X,Y,Z); colormap(parula(5)); n = 10; narvs = 2; c1 = 0.6; c2 = 0.6; w_max = 0.9; w_min = 0.4; K = 100; vmax = 1.2; x_lb = -5.12; x_ub = 5.12; x = x_lb + (x_ub-x_lb).*rand(n,narvs); v = -vmax + 2*vmax .* rand(n,narvs); fit = zeros(n,1); for i = 1:n fit(i) = Obj_fun1(x(i,:)); end pbest = x; ind = find(fit == max(fit), 1); gbest = x(ind,:); h = scatter(x(:,1),x(:,2),80,'*r'); fitnessbest = ones(K,1); for d = 1:K for i = 1:n f_i = fit(i); f_avg = sum(fit)/n; f_max = max(fit); if f_i >= f_avg if f_avg ~= f_max w = w_min + (w_max - w_min)*(f_max - f_i)/(f_max - f_avg); else w = w_max; end else w = w_max; end v(i,:) = w*v(i,:) + c1*rand(1)*(pbest(i,:) - x(i,:)) + c2*rand(1)*(gbest - x(i,:)); for j = 1: narvs if v(i,j) < -vmax v(i,j) = -vmax; elseif v(i,j) > vmax v(i,j) = vmax; end end x(i,:) = x(i,:) + v(i,:); for j = 1: narvs if x(i,j) < x_lb x(i,j) = x_lb; elseif x(i,j) > x_ub x(i,j) = x_ub; end end fit(i) = Obj_fun1(x(i,:)); if fit(i) > Obj_fun1(pbest(i,:)) pbest(i,:) = x(i,:); end if fit(i) > Obj_fun1(gbest) gbest = pbest(i,:); end end fitnessbest(d) = Obj_fun1(gbest); pause(0.1) h.XData = x(:,1); h.YData = x(:,2); endfigure(2) plot(fitnessbest)xlabel('迭代次数'); disp('最佳的位置是:'); disp(gbest)disp('此时最优值是:'); disp(Obj_fun1(gbest)) function f= Obj_fun1(x) f = @(x,y) 20 + x.^2 + y.^2 - 10*cos(2*pi.*x) - 10*cos(2*pi.*y); end

这段代码是一个简单的粒子群算法求解二元函数的最优解。具体来说,它定义了一个函数 f,代表了一个二元函数的形式;然后定义了一些参数和初始值,包括粒子数、速度范围、位置范围等;接着进行迭代计算,更新粒子的速度和位置,并记录当前最优解。最后,输出最优解和最优值。 在代码方面,建议做以下修改: 1. 增加注释:这段代码的注释较少,建议增加注释,包括变量的含义、算法逻辑等,以便于他人理解和修改。 2. 函数命名:Obj_fun1 这个函数名不太规范,建议改为 objFun1 或 obj_fun1 等符合命名规范的形式。 3. 缩进和空格:在代码风格方面,建议增加适当的缩进和空格,使代码更易读。 4. 函数传参:在函数 f 中,没有使用函数输入参数 x 和 y,这个函数可以改写为一个二元函数的形式,而不需要使用函数句柄的形式。 5. 增加结束条件:当前代码中只设置了一个迭代次数 K,建议增加结束条件,例如设置一个误差范围,当达到一定精度时停止迭代。 6. 代码结构:建议将代码分为几个函数,例如分别实现初始化、迭代、更新粒子位置等功能,以便于复用和维护。
阅读全文

相关推荐

我正在编辑【c++】代码,题目是 # P4088 [USACO18FEB] Slingshot P ## 题目描述 Farmer John 最不喜欢的农活之一就是到处搬运牛粪。为了简化这一过程,他想出了一个有趣的主意:与其用拖拉机后面的拖车搬运牛粪,为什么不通过一个巨大的牛粪弹弓将其射到空中呢?(确实,可能会出什么问题呢……) Farmer John 的农场建在一条笔直的长路上,因此农场上的任何位置都可以简单地用其在这条路上的位置来描述(实际上就是数轴上的一个点)。FJ 建造了 $N$ 个弹弓($1 \leq N \leq 10^5$),其中第 $i$ 个弹弓由三个整数 $x_i$、$y_i$ 和 $t_i$ 描述,表示这个弹弓可以将牛粪从位置 $x_i$ 射到位置 $y_i$,仅需 $t_i$ 个单位时间。 FJ 有 $M$ 堆牛粪需要搬运($1 \leq M \leq 10^5$)。第 $j$ 堆牛粪需要从位置 $a_j$ 搬运到位置 $b_j$。用拖拉机搬运牛粪,每移动距离 $d$ 需要 $d$ 个单位时间。FJ 希望通过允许每堆牛粪最多使用一次弹弓来减少搬运时间。FJ 在没有牛粪的情况下移动拖拉机的时间不计入搬运时间。 对于每堆牛粪,请帮助 FJ 确定在最多使用一次弹弓的情况下,搬运所需的最少时间。 ## 输入格式 输入的第一行包含 $N$ 和 $M$。接下来的 $N$ 行每行描述一个弹弓,包含三个整数 $x_i$、$y_i$ 和 $t_i$($0 \leq x_i, y_i, t_i \leq 10^9$)。最后的 $M$ 行描述需要搬运的牛粪堆,每行包含两个整数 $a_j$ 和 $b_j$。 ## 输出格式 输出 $M$ 行,每行对应一堆牛粪,表示搬运所需的最少时间。 ## 输入输出样例 #1 ### 输入 #1 2 3 0 10 1 13 8 2 1 12 5 2 20 7 ### 输出 #1 4 3 10 ## 说明/提示 在这里,第一堆牛粪需要从位置 $1$ 搬运到位置 $12$。如果不使用弹弓,这将花费 $11$ 个单位时间。然而,使用第一个弹弓,花费 $1$ 个单位时间将牛粪移动到位置 $0$(弹弓的起点),$1$ 个单位时间将牛粪射到位置 $10$(弹弓的终点),然后花费 $2$ 个单位时间将牛粪移动到位置 $12$。第二堆牛粪最好不使用弹弓搬运,而第三堆牛粪应使用第二个弹弓搬运。 ,请帮我检查并改正错误点。我的原始代码如下: #include<bits/stdc++.h> using namespace std; const int N=1e5+5; int n,m; struct Node{ int x,y,z; }a[2*N]; bool cmp1(Node x,Node y){ if(x.x!=y.x){ return x.x<y.x; } if(x.z!=y.z){ return x.z>y.z; } if(x.y!=y.y){ return x.y<y.y; } return 1; } bool cmp2(Node x,Node y){ if(x.x!=y.x){ return x.x>y.x; } if(x.z!=y.z){ return x.z>y.z; } if(x.y!=y.y){ return x.y<y.y; } return 1; } int ans[N]; int lowbit(int x){ return x&(-x); } class xdtr{ public: struct Node{ int l,r; int mi; Node *cl,*cr; int mid(){ return (l+r)/2; } }; int h; Node tr[N*4]; Node* add(int l,int r){ tr[++h]={l,r,(int)1e9,nullptr,nullptr}; return &tr[h]; } Node* head; xdtr(){ h=0; head=add(0,n); } Node* zl(Node *x){ if(x->cl==nullptr){ x->cl=add(x->l,x->mid()); } return x->cl; } Node* zr(Node *x){ if(x->cr==nullptr){ x->cr=add(x->mid()+1,x->r); } return x->cr; } void push_up(Node *x){ x->mi=min(zl(x)->mi,zr(x)->mi); } int query(Node *x,int l,int r){ if((l<=x->l)&&(x->r<=r)){ return x->mi; } int ans=1e9; if(x->mid()<r){ ans=min(ans,query(zl(x),l,r)); } if(l<x->mid()){ ans=min(ans,query(zr(x),l,r)); } return ans; } int query(int l,int r){ return query(head,l,r); } void update(Node *x,int r,int a){ if((r==x->l)&&(x->r==r)){ x->mi=min(x->mi,a); } if(x->mid()<r){ update(zl(x),r,a); } if(r<x->mid()){ update(zr(x),r,a); } push_up(x); } void update(int x,int a){ } }w1,w2,w3,w4; int main(){ cin>>n>>m; for(int i=1;i<=n;++i){ cin>>a[i].x>>a[i].y>>a[i].z; } for(int i=1;i<=m;++i){ cin>>a[n+i].x>>a[n+i].y; a[n+i].z=-i; ans[i]=abs(a[n+i].x>>a[n+i].y); } sort(a+1,a+1+n+m,cmp1); for(int i=1;i<=n+m;++i){ if(a[i].z<0){ ans[-a[i].z]=min(ans[-a[i].z],w2.query(0,a[i].y)+a[i].x+a[i].y); ans[-a[i].z]=min(ans[-a[i].z],w3.query(a[i].y,n)+a[i].x-a[i].y); }else{ w2.update(a[i].y,-a[i].x-a[i].y+a[i].z); w3.update(a[i].y,-a[i].x+a[i].y+a[i].z); } } sort(a+1,a+1+n+m,cmp2); for(int i=1;i<=n+m;++i){ if(a[i].z<0){ ans[-a[i].z]=min(ans[-a[i].z],w1.query(0,a[i].y)-a[i].x+a[i].y); ans[-a[i].z]=min(ans[-a[i].z],w4.query(a[i].y,n)-a[i].x-a[i].y); }else{ w1.update(a[i].y,+a[i].x-a[i].y+a[i].z); w4.update(a[i].y,+a[i].x+a[i].y+a[i].z); } } for(int i=1;i<=m;++i){ cout<<ans[i]<<endl; } return 0; }

clear f = @(x,y) 20 + x.^2 + y.^2 - 10*cos(2*pi.*x) - 10*cos(2*pi.*y) ; x0 = [-5.12:0.05:5.12]; y0 = x0 ; [X,Y] = meshgrid(x0,y0); Z =f(X,Y) ; figure(1); mesh(X,Y,Z); colormap(parula(5)); n = 10; narvs = 2; c1 = 0.6; c2 = 0.6; w_max = 0.9; w_min = 0.4; K = 100; vmax = 1.2; x_lb = -5.12; x_ub = 5.12; x = zeros(n,narvs); x = x_lb + (x_ub-x_lb).*rand(n,narvs) v = -vmax + 2*vmax .* rand(n,narvs); fit = zeros(n,1); for i = 1:n fit(i) = Obj_fun1(x(i,:)); end pbest = x; ind = find(fit == max(fit), 1); gbest = x(ind,:); h = scatter(x,fit,80,'*r'); fitnessbest = ones(K,1); for d = 1:K for i = 1:n f_i = fit(i); f_avg = sum(fit)/n; f_max = max(fit); if f_i >= f_avg if f_avg ~= f_max w = w_min + (w_max - w_min)*(f_max - f_i)/(f_max - f_avg); else w = w_max; end else w = w_max; end v(i,:) = w*v(i,:) + c1*rand(1)*(pbest(i,:) - x(i,:)) + c2*rand(1)*(gbest - x(i,:)); for j = 1: narvs if v(i,j) < -vmax(j) v(i,j) = -vmax(j); elseif v(i,j) > vmax(j) v(i,j) = vmax(j); end end x(i,:) = x(i,:) + v(i,:); for j = 1: narvs if x(i,j) < x_lb(j) x(i,j) = x_lb(j); elseif x(i,j) > x_ub(j) x(i,j) = x_ub(j); end end fit(i) = Obj_fun1(x(i,:)); if fit(i) > Obj_fun1(pbest(i,:)) pbest(i,:) = x(i,:); end if fit(i) > Obj_fun1(gbest) gbest = pbest(i,:); end end fitnessbest(d) = Obj_fun1(gbest); pause(0.1) h.XData = x; h.YData = fit; end figure(2) plot(fitnessbest) xlabel('迭代次数'); disp('最佳的位置是:'); disp(gbest) disp('此时最优值是:'); disp(Obj_fun1(gbest)) function y = Obj_fun1(x) y = 7*cos(5*x) + 4*sin(x); end

解释一段python代码 class KalmanFilter(object): def init(self, dim_x, dim_z, dim_u=0): if dim_x < 1: raise ValueError('dim_x must be 1 or greater') if dim_z < 1: raise ValueError('dim_z must be 1 or greater') if dim_u < 0: raise ValueError('dim_u must be 0 or greater') self.dim_x = dim_x self.dim_z = dim_z self.dim_u = dim_u self.x = zeros((dim_x, 1)) # state self.P = eye(dim_x) # uncertainty covariance self.Q = eye(dim_x) # process uncertainty self.B = None # control transition matrix self.F = eye(dim_x) # state transition matrix self.H = zeros((dim_z, dim_x)) # Measurement function self.R = eye(dim_z) # state uncertainty self._alpha_sq = 1. # fading memory control self.M = np.zeros((dim_z, dim_z)) # process-measurement cross correlation self.z = np.array([[None]*self.dim_z]).T # gain and residual are computed during the innovation step. We # save them so that in case you want to inspect them for various # purposes self.K = np.zeros((dim_x, dim_z)) # kalman gain self.y = zeros((dim_z, 1)) self.S = np.zeros((dim_z, dim_z)) # system uncertainty self.SI = np.zeros((dim_z, dim_z)) # inverse system uncertainty # identity matrix. Do not alter this. self._I = np.eye(dim_x) # these will always be a copy of x,P after predict() is called self.x_prior = self.x.copy() self.P_prior = self.P.copy() # these will always be a copy of x,P after update() is called self.x_post = self.x.copy() self.P_post = self.P.copy() # Only computed only if requested via property self._log_likelihood = log(sys.float_info.min) self._likelihood = sys.float_info.min self._mahalanobis = None self.inv = np.linalg.inv

import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn import tree # 生成所有测试样本点 def make_meshgrid(x, y, h=.02): x_min, x_max = x.min() - 1, x.max() + 1 y_min, y_max = y.min() - 1, y.max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) return xx, yy # 对测试样本进行预测,并显示 def plot_test_results(ax, clf, xx, yy, **params): Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) ax.contourf(xx, yy, Z, **params) # 载入iris数据集(只使用前面连个特征) iris = datasets.load_iris() X_train,X_test,y_train,y_test = train_test_split(iris.data,iris.target,test_size = 0.20,random_state = 20) # 创建并训练决策树 clf = tree.DecisionTreeClassifier() # 决策树分类器 clf = clf.fit(X_train,y_train) # 生成所有测试样本点 plt.figure(dpi=200) # feature_names=iris.feature_names设置决策树中显示的特征名称 tree.plot_tree(clf,feature_names=iris.feature_names,class_names=iris.target_names) # 显示测试样本的分类结果 title = ('DecisionTreeClassifier') fig, ax = plt.subplots(figsize = (5, 5)) plt.subplots_adjust(wspace=0.4, hspace=0.4) plot_test_results(ax, clf, xx, yy, cmap=plt.cm.coolwarm, alpha=0.8) # 显示训练样本 ax.scatter(X0, X1, c=y, cmap=plt.cm.coolwarm, s=20, edgecolors='k') ax.set_xlim(xx.min(), xx.max()) ax.set_ylim(yy.min(), yy.max()) ax.set_xlabel('x1') ax.set_ylabel('x2') ax.set_xticks(()) ax.set_yticks(()) ax.set_title(title) plt.show()

void process_file(const std::string& input_file, const std::string& output_file) { // ----------------- 1. 读取LAZ文件 ----------------- pdal::Option las_opt("filename", input_file); pdal::Options las_opts; las_opts.add(las_opt); pdal::LasReader reader; reader.setOptions(las_opts); pdal::PointTable table; reader.prepare(table); pdal::PointViewSet viewSet = reader.execute(table); pdal::PointViewPtr view = *viewSet.begin(); // ----------------- 2. 提取地面点(分类码2) ----------------- std::vector<std::tuple<double, double, double>> ground_points; // 存储XYZ for (pdal::PointId i = 0; i < view->size(); ++i) { if (view->getFieldAs<int>(pdal::Dimension::Id::Classification, i) == 2) { double x = view->getFieldAs<double>(pdal::Dimension::Id::X, i); double y = view->getFieldAs<double>(pdal::Dimension::Id::Y, i); double z = view->getFieldAs<double>(pdal::Dimension::Id::Z, i); ground_points.emplace_back(x, y, z); } } if (ground_points.empty()) { std::cerr << "警告: " << input_file << " 中没有地面点!" << std::endl; return; } // ----------------- 3. 构建Delaunay三角网 ----------------- std::vector points; for (const auto& pt : ground_points) { points.emplace_back(std::get<0>(pt), std::get<1>(pt)); } Delaunay dt(points.begin(), points.end()); // ----------------- 4. 计算数据范围 ----------------- double min_x = 1e9, max_x = -1e9; double min_y = 1e9, max_y = -1e9; for (const auto& pt : ground_points) { min_x = std::min(min_x, std::get<0>(pt)); max_x = std::max(max_x, std::get<0>(pt)); min_y = std::min(min_y, std::get<1>(pt)); max_y = std::max(max_y, std::get<1>(pt)); } 解释每一行代码

给出相同功能的代码import os import numpy as np import nibabel as nib import imageio from PIL import Image def read_niifile(niifilepath): # 读取niifile文件 img = nib.load(niifilepath) # 提取niifile文件 img_fdata = img.get_fdata(dtype='float32') return img_fdata def save_fig(niifilepath, savepath, num, name): # 保存为图片 name = name.split('-')[1] filepath_seg = niifilepath + "segmentation\" + "segmentation-" + name filepath_vol = niifilepath + "volume\" + "volume-" + name savepath_seg = savepath + "segmentation\" savepath_vol = savepath + "volume\" if not os.path.exists(savepath_seg): os.makedirs(savepath_seg) if not os.path.exists(savepath_vol): os.makedirs(savepath_vol) fdata_vol = read_niifile(filepath_vol) fdata_seg = read_niifile(filepath_seg) (x, y, z) = fdata_seg.shape total = x * y for k in range(z): silce_seg = fdata_seg[:, :, k] if silce_seg.max() == 0: continue else: silce_seg = (silce_seg - silce_seg.min()) / (silce_seg.max() - silce_seg.min()) * 255 silce_seg = np.uint8(Image.fromarray(silce_seg).convert('L')) silce_seg = cv2.threshold(silce_seg, 1, 255, cv2.THRESH_BINARY)[1] if (np.sum(silce_seg == 255) / total) > 0.015: silce_vol = fdata_vol[:, :, k] silce_vol = (silce_vol - silce_vol.min()) / (silce_vol.max() - silce_vol.min()) * 255 silce_vol = np.uint8(Image.fromarray(silce_vol).convert('L')) imageio.imwrite(os.path.join(savepath_seg, '{}.png'.format(num)), silce_seg) imageio.imwrite(os.path.join(savepath_vol, '{}.png'.format(num)), silce_vol) num += 1 return num if name == 'main': path = r'C:\Users\Administrator\Desktop\LiTS2017' savepath = r'C:\Users\Administrator\Desktop\2D-LiTS2017' filenames = os.listdir(path + "segmentation") num = 0 for filename in filenames: num = save_fig(path, savepath, num, filename) 。用另一段代码实现相同功能

import os import numpy as np import nibabel as nib import imageio import cv2 def read_niifile(niifilepath): # 读取niifile文件 img = nib.load(niifilepath) # 提取niifile文件 img_fdata = img.get_fdata(dtype='float32') return img_fdata def save_fig(niifilepath, savepath, num, name): # 保存为图片 name = name.split('-')[1] filepath_seg = niifilepath + "segmentation" + "segmentation-" + name filepath_vol = niifilepath + "volume" + "volume-" + name savepath_seg = savepath + "segmentation" savepath_vol = savepath + "volume" if not os.path.exists(savepath_seg): os.makedirs(savepath_seg) if not os.path.exists(savepath_vol): os.makedirs(savepath_vol) fdata_vol = read_niifile(filepath_vol) fdata_seg = read_niifile(filepath_seg) (x, y, z) = fdata_seg.shape total = x * y for k in range(z): silce_seg = fdata_seg[:, :, k] # 三个位置表示三个不同角度的切片 if silce_seg.max() == 0: continue else: silce_seg = (silce_seg - silce_seg.min()) / (silce_seg.max() - silce_seg.min()) * 255 silce_seg = cv2.threshold(silce_seg, 1, 255, cv2.THRESH_BINARY)[1] if (np.sum(silce_seg == 255) / total) > 0.015: silce_vol = fdata_vol[:, :, k] silce_vol = (silce_vol - silce_vol.min()) / (silce_vol.max() - silce_vol.min()) * 255 imageio.imwrite(os.path.join(savepath_seg, '{}.png'.format(num)), silce_seg) imageio.imwrite(os.path.join(savepath_vol, '{}.png'.format(num)), silce_vol) num += 1 # 将切片信息保存为png格式 return num if name == 'main': path = r"C:\Users\Administrator\Desktop\LiTS2017" savepath = r"C:\Users\Administrator\Desktop\2D-LiTS2017" filenames = os.listdir(path + "segmentation") num = 0 for filename in filenames: num = save_fig(path, savepath, num, filename) 将代码中的 使用cv2模块的代码替换掉,给出一整段完整代码,实现相同功能

大家在看

recommend-type

NPPExport_0.3.0_32位64位版本.zip

Notepad++ NppExport插件,包含win32 和 x64 两个版本。
recommend-type

H.323协议详解

H.323详解,讲的很详细,具备参考价值!
recommend-type

单片机与DSP中的基于DSP的PSK信号调制设计与实现

数字调制信号又称为键控信号, 其调制过程是用键控的方法由基带信号对载频信号的振幅、频率及相位进行调制。这种调制的最基本方法有三种: 振幅键控(ASK)、频移键控(FSK)、相移键控(PSK), 同时可根据所处理的基带信号的进制不同分为二进制和多进制调制(M进制)。多进制数字调制与二进制相比, 其频谱利用率更高。其中, QPSK (即4PSK) 是MPSK (多进制相移键控) 中应用较广泛的一种调制方式。为此, 本文研究了基于DSP的BPSK以及DPSK的调制电路的实现方法, 并给出了DSP调制实验的结果。   1 BPSK信号的调制实现   二进制相移键控(BPSK) 是多进制相移键控(M
recommend-type

DB2创建索引和数据库联机备份之间有冲突_一次奇特的锁等待问题案例分析-contracted.doc

在本文中将具体分析一个 DB2 数据库联机备份期间创建索引被锁等待的实际案例,使读者能够了解这一很有可能经常发生的案例的前因后果,在各自的工作场景能够有效的避免该问题,同时还可以借鉴本文中采用的 DB2 锁等待问题的分析方法。
recommend-type

IQ失衡_IQ失衡;I/Qimbalance;_IQ不均衡_

IQ失衡对OFDM系统的影响相关研究论文资料

最新推荐

recommend-type

基于Andorid的音乐播放器项目改进版本设计.zip

基于Andorid的音乐播放器项目改进版本设计实现源码,主要针对计算机相关专业的正在做毕设的学生和需要项目实战练习的学习者,也可作为课程设计、期末大作业。
recommend-type

Windows下操作Linux图形界面的VNC工具

在信息技术领域,能够实现操作系统之间便捷的远程访问是非常重要的。尤其在实际工作中,当需要从Windows系统连接到远程的Linux服务器时,使用图形界面工具将极大地提高工作效率和便捷性。本文将详细介绍Windows连接Linux的图形界面工具的相关知识点。 首先,从标题可以看出,我们讨论的是一种能够让Windows用户通过图形界面访问Linux系统的方法。这里的图形界面工具是指能够让用户在Windows环境中,通过图形界面远程操控Linux服务器的软件。 描述部分重复强调了工具的用途,即在Windows平台上通过图形界面访问Linux系统的图形用户界面。这种方式使得用户无需直接操作Linux系统,即可完成管理任务。 标签部分提到了两个关键词:“Windows”和“连接”,以及“Linux的图形界面工具”,这进一步明确了我们讨论的是Windows环境下使用的远程连接Linux图形界面的工具。 在文件的名称列表中,我们看到了一个名为“vncview.exe”的文件。这是VNC Viewer的可执行文件,VNC(Virtual Network Computing)是一种远程显示系统,可以让用户通过网络控制另一台计算机的桌面。VNC Viewer是一个客户端软件,它允许用户连接到VNC服务器上,访问远程计算机的桌面环境。 VNC的工作原理如下: 1. 服务端设置:首先需要在Linux系统上安装并启动VNC服务器。VNC服务器监听特定端口,等待来自客户端的连接请求。在Linux系统上,常用的VNC服务器有VNC Server、Xvnc等。 2. 客户端连接:用户在Windows操作系统上使用VNC Viewer(如vncview.exe)来连接Linux系统上的VNC服务器。连接过程中,用户需要输入远程服务器的IP地址以及VNC服务器监听的端口号。 3. 认证过程:为了保证安全性,VNC在连接时可能会要求输入密码。密码是在Linux系统上设置VNC服务器时配置的,用于验证用户的身份。 4. 图形界面共享:一旦认证成功,VNC Viewer将显示远程Linux系统的桌面环境。用户可以通过VNC Viewer进行操作,如同操作本地计算机一样。 使用VNC连接Linux图形界面工具的好处包括: - 与Linux系统的图形用户界面进行交互,便于进行图形化操作。 - 方便的远程桌面管理,尤其适用于需要通过图形界面来安装软件、编辑配置文件、监控系统状态等场景。 - 跨平台操作,允许Windows用户在不离开他们熟悉的操作系统环境下访问Linux服务器。 除了VNC之外,还有一些其他的图形界面远程访问工具,例如: - RDP(Remote Desktop Protocol):通常与Windows远程桌面连接使用,但在Linux中也有相应的实现(如FreeRDP)。 - TeamViewer、AnyDesk等:这些工具提供了跨平台的远程桌面访问能力,虽然它们不是专为Linux设计,但它们都能很好地支持Linux系统。 在使用这些工具时,用户应该注意以下几点: - 安全性:确保使用强密码以及加密连接,防止未经授权的访问。 - 网络环境:需要保证网络的稳定性和带宽,以获得良好的远程桌面体验。 - 更新与维护:定期更新客户端和服务器端软件,确保安全性以及新功能的使用。 总结以上内容,Windows连接Linux图形界面的工具是实现跨平台远程管理的有效手段,特别是对于需要图形化操作的场景。VNC Viewer是一个应用广泛且成熟的工具,但选择适合自身需求的远程桌面工具对于提高工作效率与安全性至关重要。
recommend-type

【SketchUp Ruby API:从入门到精通】

# 摘要 本论文深入介绍了SketchUp Ruby API的使用与开发,为用户提供了一套从基础到进阶再到高级特性的完整学习路径。文章首先介绍了SketchUp Ruby API的基本概念、结构以及如何编写基础插件,并通过实例演示了3D模型的创建和编辑、用户界面定制等进阶应用。接着,探讨了高级特性,例如材质渲染、网络功能以及AP
recommend-type

VMware虚拟机打开虚拟网络编辑器出现由于找不到vnetlib.dll,无法继续执行代码。重新安装程序可能会解决问题

<think>好的,我需要帮助用户解决VMware虚拟机中缺少vnetlib.dll导致无法打开虚拟网络编辑器的问题。用户提到已经尝试过重新安装程序,但可能没有彻底卸载之前的残留文件。根据提供的引用资料,特别是引用[2]、[3]、[4]、[5],问题通常是由于VMware卸载不干净导致的。 首先,我应该列出彻底卸载VMware的步骤,包括关闭相关服务、使用卸载工具、清理注册表和文件残留,以及删除虚拟网卡。然后,建议重新安装最新版本的VMware。可能还需要提醒用户在安装后检查网络适配器设置,确保虚拟网卡正确安装。同时,用户可能需要手动恢复vnetlib.dll文件,但更安全的方法是通过官方安
recommend-type

基于Preact的高性能PWA实现定期天气信息更新

### 知识点详解 #### 1. React框架基础 React是由Facebook开发和维护的JavaScript库,专门用于构建用户界面。它是基于组件的,使得开发者能够创建大型的、动态的、数据驱动的Web应用。React的虚拟DOM(Virtual DOM)机制能够高效地更新和渲染界面,这是因为它仅对需要更新的部分进行操作,减少了与真实DOM的交互,从而提高了性能。 #### 2. Preact简介 Preact是一个与React功能相似的轻量级JavaScript库,它提供了React的核心功能,但体积更小,性能更高。Preact非常适合于需要快速加载和高效执行的场景,比如渐进式Web应用(Progressive Web Apps, PWA)。由于Preact的API与React非常接近,开发者可以在不牺牲太多现有React知识的情况下,享受到更轻量级的库带来的性能提升。 #### 3. 渐进式Web应用(PWA) PWA是一种设计理念,它通过一系列的Web技术使得Web应用能够提供类似原生应用的体验。PWA的特点包括离线能力、可安装性、即时加载、后台同步等。通过PWA,开发者能够为用户提供更快、更可靠、更互动的网页应用体验。PWA依赖于Service Workers、Manifest文件等技术来实现这些特性。 #### 4. Service Workers Service Workers是浏览器的一个额外的JavaScript线程,它可以拦截和处理网络请求,管理缓存,从而让Web应用可以离线工作。Service Workers运行在浏览器后台,不会影响Web页面的性能,为PWA的离线功能提供了技术基础。 #### 5. Web应用的Manifest文件 Manifest文件是PWA的核心组成部分之一,它是一个简单的JSON文件,为Web应用提供了名称、图标、启动画面、显示方式等配置信息。通过配置Manifest文件,可以定义PWA在用户设备上的安装方式以及应用的外观和行为。 #### 6. 天气信息数据获取 为了提供定期的天气信息,该应用需要接入一个天气信息API服务。开发者可以使用各种公共的或私有的天气API来获取实时天气数据。获取数据后,应用会解析这些数据并将其展示给用户。 #### 7. Web应用的性能优化 在开发过程中,性能优化是确保Web应用反应迅速和资源高效使用的关键环节。常见的优化技术包括但不限于减少HTTP请求、代码分割(code splitting)、懒加载(lazy loading)、优化渲染路径以及使用Preact这样的轻量级库。 #### 8. 压缩包子文件技术 “压缩包子文件”的命名暗示了该应用可能使用了某种形式的文件压缩技术。在Web开发中,这可能指将多个文件打包成一个或几个体积更小的文件,以便更快地加载。常用的工具有Webpack、Rollup等,这些工具可以将JavaScript、CSS、图片等资源进行压缩、合并和优化,从而减少网络请求,提升页面加载速度。 综上所述,本文件描述了一个基于Preact构建的高性能渐进式Web应用,它能够提供定期天气信息。该应用利用了Preact的轻量级特性和PWA技术,以实现快速响应和离线工作的能力。开发者需要了解React框架、Preact的优势、Service Workers、Manifest文件配置、天气数据获取和Web应用性能优化等关键知识点。通过这些技术,可以为用户提供一个加载速度快、交互流畅且具有离线功能的应用体验。
recommend-type

从停机到上线,EMC VNX5100控制器SP更换的实战演练

# 摘要 本文详细介绍了EMC VNX5100控制器的更换流程、故障诊断、停机保护、系统恢复以及长期监控与预防性维护策略。通过细致的准备工作、详尽的风险评估以及备份策略的制定,确保控制器更换过程的安全性与数据的完整性。文中还阐述了硬件故障诊断方法、系统停机计划的制定以及数据保护步骤。更换操作指南和系统重启初始化配置得到了详尽说明,以确保系统功能的正常恢复与性能优化。最后,文章强调了性能测试
recommend-type

ubuntu labelme中文版安装

### LabelMe 中文版在 Ubuntu 上的安装 对于希望在 Ubuntu 系统上安装 LabelMe 并使用其中文界面的用户来说,可以按照如下方式进行操作: #### 安装依赖库 为了确保 LabelMe 能够正常运行,在开始之前需确认已安装必要的 Python 库以及 PyQt5 和 Pillow。 如果尚未安装 `pyqt5` 可通过以下命令完成安装: ```bash sudo apt-get update && sudo apt-get install python3-pyqt5 ``` 同样地,如果没有安装 `Pillow` 图像处理库,则可以通过 pip 工具来安装
recommend-type

全新免费HTML5商业网站模板发布

根据提供的文件信息,我们可以提炼出以下IT相关知识点: ### HTML5 和 CSS3 标准 HTML5是最新版本的超文本标记语言(HTML),它为网页提供了更多的元素和属性,增强了网页的表现力和功能。HTML5支持更丰富的多媒体内容,例如音视频,并引入了离线存储、地理定位等新功能。它还定义了与浏览器的交互方式,使得开发者可以更轻松地创建交互式网页应用。 CSS3是层叠样式表(CSS)的最新版本,它在之前的版本基础上,增加了许多新的选择器、属性和功能,例如圆角、阴影、渐变等视觉效果。CSS3使得网页设计师可以更方便地实现复杂的动画和布局,同时还能保持网站的响应式设计和高性能。 ### W3C 标准 W3C(World Wide Web Consortium)是一个制定国际互联网标准的组织,其目的是保证网络的长期发展和应用。W3C制定的标准包括HTML、CSS、SVG等,确保网页内容可以在不同的浏览器上以一致的方式呈现,无论是在电脑、手机还是其他设备上。W3C还对网页的可访问性、国际化和辅助功能提出了明确的要求。 ### 跨浏览器支持 跨浏览器支持是指网页在不同的浏览器(如Chrome、Firefox、Safari、Internet Explorer等)上都能正常工作,具有相同的视觉效果和功能。在网页设计时,考虑到浏览器的兼容性问题是非常重要的,因为不同的浏览器可能会以不同的方式解析HTML和CSS代码。为了解决这些问题,开发者通常会使用一些技巧来确保网页的兼容性,例如使用条件注释、浏览器检测、polyfills等。 ### 视频整合 随着网络技术的发展,现代网页越来越多地整合视频内容。HTML5中引入了`<video>`标签,使得网页可以直接嵌入视频,而不需要额外的插件。与YouTube和Vimeo等视频服务的整合,允许网站从这些平台嵌入视频或创建视频播放器,从而为用户提供更加丰富的内容体验。 ### 网站模板和官网模板 网站模板是一种预先设计好的网页布局,它包括了网页的HTML结构和CSS样式。使用网站模板可以快速地搭建起一个功能完整的网站,而无需从头开始编写代码。这对于非专业的网站开发人员或需要快速上线的商业项目来说,是一个非常实用的工具。 官网模板特指那些为公司或个人的官方网站设计的模板,它通常会有一个更为专业和一致的品牌形象,包含多个页面,如首页、服务页、产品页、关于我们、联系方式等。这类模板不仅外观吸引人,而且考虑到用户体验和SEO(搜索引擎优化)等因素。 ### 网站模板文件结构 在提供的文件名列表中,我们可以看到一个典型的网站模板结构: - **index.html**: 这是网站的首页文件,通常是用户访问网站时看到的第一个页面。 - **services.html**: 此页面可能会列出公司提供的服务或产品功能介绍。 - **products.html**: 这个页面用于展示公司的产品或服务的详细信息。 - **about.html**: 关于页面,介绍公司的背景、团队成员或历史等信息。 - **contacts.html**: 联系页面,提供用户与公司交流的方式,如电子邮件、电话、联系表单等。 - **css**: 这个文件夹包含网站的所有CSS样式文件,控制着网站的布局、颜色和字体等。 - **images**: 此文件夹存放网站中使用的图片资源。 - **js**: 这个文件夹包含所有JavaScript文件,这些文件用于实现网站的交互功能,如动画、表单验证等。 通过上述文件结构,开发者可以快速部署和自定义一个功能齐全的网站。对于技术人员来说,了解这些文件的作用和它们如何协同工作,是构建和维护网站的基础知识。对于非技术人员,了解这些概念有助于更好地与网页开发人员沟通,确保网站的设计和功能符合业务需求。
recommend-type

EMC VNX5100控制器SP更换全流程指南:新手到高手的必备技能

# 摘要 本文深入探讨了EMC VNX5100控制器的维护和管理。首先,文章介绍了EMC VNX5100控制器的基本概念和维护基础知识,随后详细解析了控制器硬件结构以及软件架构。第二章深入阐述了控制器硬件组件、存储接口及端口类型,以及Unisphere界面和VNX操作系统与固件。此外,本文还探讨了控制器的冗余和故障转移机制,包括主动-被动与主动-主动配置以及故障转移过程与监控。在SP更换方面,第三章详述了准备
recommend-type

lamada函数

Lambda 函数,也称为匿名函数或内联函数,在 Python 中是一种小型的、仅限于单行表达式的函数。它没有名字,因此被称为“匿名”,通常用于临时性的简单操作场合。语法结构非常紧凑,使得编写简洁代码成为可能。 以下是关于 Lambda 函数的一些关键点: 1. **基本语法**: - 形式:`lambda 参数1, 参数2, ... : 表达式` - 这里的 `lambda` 关键字标志着这是个 Lambda 函数定义; - 参数是可以接受零个或多个人参变量; - 最后跟随的是一个基于这些输入参数计算结果的表达式。 2. **示例**: 假设我们需要创建一个简单