旋转卡壳法求凸包直径并绘图的python代码
时间: 2023-07-10 18:21:08 浏览: 132
以下是旋转卡壳法求凸包直径并绘图的Python代码:
```python
import math
import matplotlib.pyplot as plt
# 计算两点之间的距离
def distance(p1, p2):
return math.sqrt((p1[0] - p2[0]) ** 2 + (p1[1] - p2[1]) ** 2)
# 计算向量的叉积
def cross_product(p1, p2, p3):
return (p2[0] - p1[0]) * (p3[1] - p1[1]) - (p3[0] - p1[0]) * (p2[1] - p1[1])
# 计算凸包直径
def diameter(points):
n = len(points)
if n < 2:
return 0, []
if n == 2:
return distance(points[0], points[1]), [points[0], points[1]]
# 找到最左边和最右边的点
left = min(points, key=lambda x: x[0])
right = max(points, key=lambda x: x[0])
# 找到以左右两个点为端点的最远的直线
max_distance = 0
max_points = []
i, j = points.index(left), points.index(right)
l, r = (i + 1) % n, (j + 1) % n
while i != j or l != r:
d1 = distance(points[i], points[l])
d2 = distance(points[j], points[r])
if d1 > max_distance:
max_distance = d1
max_points = [points[i], points[l]]
if d2 > max_distance:
max_distance = d2
max_points = [points[j], points[r]]
if cross_product(points[i], points[l], points[j]) < 0:
i = (i - 1) % n
else:
l = (l + 1) % n
if cross_product(points[j], points[r], points[i]) < 0:
j = (j + 1) % n
else:
r = (r - 1) % n
return max_distance, max_points
# 绘制凸包和直径
def plot(points, diameter_points):
x = [p[0] for p in points]
y = [p[1] for p in points]
plt.plot(x, y, 'bo')
for i in range(len(points)):
plt.text(points[i][0], points[i][1], str(i))
plt.plot([p[0] for p in diameter_points], [p[1] for p in diameter_points], 'r-')
plt.show()
if __name__ == '__main__':
points = [(0, 0), (1, 2), (3, 3), (2, 1), (1, 1), (2, 2)]
d, dp = diameter(points)
print('直径长度:', d)
print('直径端点:', dp)
plot(points, dp)
```
在这个示例中,我们定义了一个点集,计算它的凸包直径,并绘制了凸包和直径。你可以根据自己的需要修改点集,测试代码的正确性。
阅读全文