Prim算法代码实现思路

时间: 2023-09-09 19:06:24 浏览: 50
Prim算法是一种求解最小生成树的贪心算法,其基本思想是从一个起点开始,每次选择一个距离已有生成树最近的且未加入生成树的节点加入生成树中,直到所有节点都被加入生成树为止。 Prim算法的代码实现思路如下: 1. 初始化一个空的生成树和一个集合X,X中包含起点节点。 2. 在剩余节点中找到与生成树中节点距离最近的节点v,并将其加入生成树中。 3. 更新集合X,将v加入X中。 4. 重复步骤2和3,直到所有节点都被加入生成树为止。 具体实现时,可以使用一个数组dist来记录每个节点和生成树中节点的距离,使用一个数组visited来记录每个节点是否已经加入生成树中。每次选择距离最近的节点时,可以遍历dist数组找到dist值最小且未被访问的节点。 以下是Prim算法的伪代码: ``` Prim(G, s): 初始化一个空的生成树T和一个集合X,X中包含起点s。 初始化dist数组,dist[i]表示节点i和生成树中节点的距离,初始化visited数组,visited[i]表示节点i是否已经加入生成树。 while X不包含所有节点: 找到与生成树中节点距离最近的节点v,并将其加入生成树中。 更新集合X,将v加入X中。 更新dist数组,更新距离v的邻居节点到生成树的距离。 返回生成树T。 ```
相关问题

c++的prim算法代码

### 回答1: Prim算法是一种用于生成最小生成树的算法。下面是C语言实现的Prim算法代码: ``` #include <stdio.h> #define MAX 100 #define INF 0x3f3f3f3f int graph[MAX][MAX]; int visited[MAX]; int distance[MAX]; int parent[MAX]; void prim(int n) { for(int i = 1; i <= n; i++) { visited[i] = 0; distance[i] = INF; } distance[1] = 0; for(int i = 1; i <= n; i++) { int u = 0; for(int j = 1; j <= n; j++) { if(!visited[j] && (u == 0 || distance[j] < distance[u])) { u = j; } } visited[u] = 1; for(int v = 1; v <= n; v++) { if(graph[u][v] != 0 && !visited[v] && graph[u][v] < distance[v]) { distance[v] = graph[u][v]; parent[v] = u; } } } for(int i = 2; i <= n; i++) { printf("%d-%d: %d\n", parent[i], i, graph[parent[i]][i]); } } int main() { int n, m; scanf("%d%d", &n, &m); for(int i = 1; i <= m; i++) { int u, v, w; scanf("%d%d%d", &u, &v, &w); graph[u][v] = graph[v][u] = w; } prim(n); return 0; } ``` 注意:这只是一份简单的示例代码,实际应用中可能需要进行改进或优化。 ### 回答2: C语言的Prim算法代码实现如下: ```c #include <stdio.h> #define INF 9999 // 定义无穷大 int minKey(int key[], int mstSet[], int n) { int min = INF, min_index; for (int v = 0; v < n; v++) { if (mstSet[v] == 0 && key[v] < min) { min = key[v]; min_index = v; } } return min_index; } void primMST(int graph[][5], int n) { int parent[n]; // 用于存储最小生成树中的父节点 int key[n]; // 用于存储当前顶点到最小生成树的最小权值 int mstSet[n]; // 用于记录顶点是否被加入最小生成树 for (int i = 0; i < n; i++) { key[i] = INF; mstSet[i] = 0; } key[0] = 0; // 选择第一个顶点作为最小生成树的起始顶点 parent[0] = -1; // 第一个顶点没有父节点 for (int count = 0; count < n - 1; count++) { int u = minKey(key, mstSet, n); // 选择key值最小的顶点u加入最小生成树 mstSet[u] = 1; // 将顶点u标记为已加入最小生成树 for (int v = 0; v < n; v++) { if (graph[u][v] && mstSet[v] == 0 && graph[u][v] < key[v]) { parent[v] = u; key[v] = graph[u][v]; } } } printf("边 权值\n"); for (int i = 1; i < n; i++) { printf("%d - %d %d\n", parent[i], i, graph[i][parent[i]]); } } int main() { int graph[5][5] = {{0, 2, 0, 6, 0}, {2, 0, 3, 8, 5}, {0, 3, 0, 0, 7}, {6, 8, 0, 0, 9}, {0, 5, 7, 9, 0}}; primMST(graph, 5); return 0; } ``` 该算法的实现思路是:首先初始化所有顶点的key和mstSet数组,key数组用于记录当前顶点到最小生成树的最小权值,mstSet数组用于记录顶点是否已经被加入最小生成树。然后选择第一个顶点作为最小生成树的起始顶点,循环n-1次,每次将权值最小的顶点加入最小生成树,并更新key和mstSet数组。最后输出最小生成树的边和权值。 ### 回答3: Prim算法是一种用于解决最小生成树问题的贪心算法。它的主要思想是从一个顶点开始,逐步选择边权重最小的边,并将该边所连接的顶点添加到最小生成树中,直到所有顶点都被包括在最小生成树中。 以下是C语言实现的Prim算法代码: ```c #include <stdio.h> #include <limits.h> #define V 5 // 图中顶点的数量 int minKey(int key[], int mstSet[]) { int min = INT_MAX, min_index; for (int v = 0; v < V; v++) { if (mstSet[v] == 0 && key[v] < min) { min = key[v]; min_index = v; } } return min_index; } void printMST(int parent[], int graph[V][V]) { printf("边\t权重\n"); for (int i = 1; i < V; i++) { printf("%d - %d\t%d\n", parent[i], i, graph[i][parent[i]]); } } void primMST(int graph[V][V]) { int parent[V]; int key[V]; int mstSet[V]; for (int i = 0; i < V; i++) { key[i] = INT_MAX; mstSet[i] = 0; } key[0] = 0; parent[0] = -1; for (int count = 0; count < V - 1; count++) { int u = minKey(key, mstSet); mstSet[u] = 1; for (int v = 0; v < V; v++) { if (graph[u][v] && mstSet[v] == 0 && graph[u][v] < key[v]) { parent[v] = u; key[v] = graph[u][v]; } } } printMST(parent, graph); } int main() { int graph[V][V] = { {0, 2, 0, 6, 0}, {2, 0, 3, 8, 5}, {0, 3, 0, 0, 7}, {6, 8, 0, 0, 9}, {0, 5, 7, 9, 0}, }; primMST(graph); return 0; } ``` 该算法首先定义了一个`minKey`函数,用于选取当前key值最小的顶点。然后使用`printMST`函数打印生成的最小生成树。在`primMST`函数中,首先初始化key数组和mstSet数组,然后选择一个起始顶点,设置其key为0,遍历所有顶点,逐步构建最小生成树。运行代码后,将输出最小生成树的边以及对应的权重。

利用c具体实现prim算法

### 回答1: prim算法是一种最小生成树的算法,使用C语言实现prim算法的思路是:首先,构造一个最小堆,然后执行以下操作:从最小堆中取出最小的元素,然后把它加入到最小生成树中,再依次更新其相邻节点的边的权值,并将其加入最小堆中。最后,重复上述操作,直到所有节点都被加入最小生成树中。 ### 回答2: Prim算法是一种用于解决最小生成树问题的经典算法。它以一个源顶点开始,逐步将其他未访问的顶点纳入生成树中,直到所有顶点都被加入,形成一个最小生成树。 具体实现Prim算法的步骤如下: 1. 创建一个空的最小生成树集合,初始时只包含源顶点。 2. 创建一个记录顶点的距离的数组dist[],将源顶点的距离设置为0,其他顶点的距离设置为无穷大。 3. 创建一个记录顶点是否已纳入最小生成树的数组visited[],初始时都设置为false。 4. 对于源顶点的邻接顶点,更新它们到源顶点的距离,并将源顶点作为它们的父顶点。 5. 重复以下步骤直到所有顶点都被纳入最小生成树: a. 选取距离最短的未纳入最小生成树的顶点u。 b. 将顶点u标记为已访问。 c. 对于顶点u的邻接顶点v,如果v未被访问且到u的距离小于dist[v],更新dist[v]为到u的距离,并将u作为v的父顶点。 6. 输出最小生成树。 用C语言具体实现Prim算法的伪代码如下: ``` #define V 5 // 顶点的个数 #define INF 9999999 // 无穷大 int graph[V][V] = { { 0, 2, 0, 6, 0 }, { 2, 0, 3, 8, 5 }, { 0, 3, 0, 0, 7 }, { 6, 8, 0, 0, 9 }, { 0, 5, 7, 9, 0 } }; int primMST() { int parent[V]; // 记录顶点的父顶点 int key[V]; // 记录顶点的距离 bool visited[V]; // 记录顶点是否已访问 for (int i = 0; i < V; i++) { key[i] = INF; // 初始化距离为无穷大 visited[i] = false; // 初始化所有顶点未访问 } key[0] = 0; // 源顶点的距离置为0 parent[0] = -1; // 源顶点没有父顶点 for (int count = 0; count < V-1; count++) { int u = minKey(key, visited); // 选取未纳入最小生成树的距离最短的顶点 visited[u] = true; // 将顶点u标记为已访问 for (int v = 0; v < V; v++) { if (graph[u][v] && !visited[v] && graph[u][v] < key[v]) { parent[v] = u; // 更新v的父顶点为u key[v] = graph[u][v]; // 更新v与u的距离 } } } printMST(parent); } int minKey(int key[], bool visited[]) { int min = INF, min_index; for (int v = 0; v < V; v++) { if (!visited[v] && key[v] < min) { min = key[v]; min_index = v; } } return min_index; } void printMST(int parent[]) { printf("Edge \tWeight\n"); for (int i = 1; i < V; i++) { printf("%d - %d \t%d \n", parent[i], i, graph[i][parent[i]]); } } ``` 以上是利用C语言具体实现Prim算法的示例代码,它可以找到给定图形的最小生成树并输出每条边的权重。 ### 回答3: Prim算法是一种解决最小生成树问题的贪心算法。它的思想是从一个顶点开始,逐步生成最小生成树的各个边,直到构造出最小生成树为止。 首先,我们需要定义一个辅助数组visited,用于记录每个顶点是否已经被访问过。初始化visited数组为false,表示所有顶点都未被访问过。 然后,我们选择一个顶点作为起始点,将其标记为已访问,并将其加入最小生成树。接下来,我们需要对与已访问顶点相邻的未访问顶点进行权值比较,选择其中权值最小的边加入最小生成树,并将已访问顶点加入visited数组。 重复以上步骤,直到所有顶点都被访问过为止,生成最小生成树。 以下是用C语言实现Prim算法的伪代码: ```c #define INF 0x3f3f3f3f // 定义一个无穷大的值,表示两个顶点之间不存在边 int prim(int graph[][V], int V) { int key[V]; // 记录顶点的权值 bool visited[V]; // 记录顶点是否被访问过 int parent[V]; // 记录最小生成树的父节点 for(int i = 0; i < V; i++) { key[i] = INF; // 初始化权值为无穷大 visited[i] = false; // 初始化所有顶点为未访问状态 } key[0] = 0; // 选择第一个顶点作为起始点 parent[0] = -1; // 将起始点的父节点设置为-1 for(int count = 0; count < V - 1; count++) { int u = minKey(key, visited, V); // 选择权值最小的顶点 visited[u] = true; // 标记该顶点为已访问 for(int v = 0; v < V; v++) { if(graph[u][v] && visited[v] == false && graph[u][v] < key[v]) { parent[v] = u; // 更新最小生成树的父节点 key[v] = graph[u][v]; // 更新顶点的权值 } } } return printMST(parent, graph, V); // 输出最小生成树 } ``` 以上代码中,我们需要定义两个辅助函数minKey和printMST。minKey函数用于找到未访问顶点中权值最小的顶点,printMST函数用于输出最小生成树。 最后,通过调用prim函数,传入图的邻接矩阵和顶点数目,即可实现Prim算法,得到最小生成树。

相关推荐

最新推荐

recommend-type

利用迪杰斯特拉算法的全国交通咨询系统设计与实现

全国交通咨询模拟系统是一个基于互联网的应用程序,旨在提供实时的交通咨询服务,帮助用户找到花费最少时间和金钱的交通路线。系统主要功能包括需求分析、个人工作管理、概要设计以及源程序实现。 首先,在需求分析阶段,系统明确了解用户的需求,可能是针对长途旅行、通勤或日常出行,用户可能关心的是时间效率和成本效益。这个阶段对系统的功能、性能指标以及用户界面有明确的定义。 概要设计部分详细地阐述了系统的流程。主程序流程图展示了程序的基本结构,从开始到结束的整体运行流程,包括用户输入起始和终止城市名称,系统查找路径并显示结果等步骤。创建图算法流程图则关注于核心算法——迪杰斯特拉算法的应用,该算法用于计算从一个节点到所有其他节点的最短路径,对于求解交通咨询问题至关重要。 具体到源程序,设计者实现了输入城市名称的功能,通过 LocateVex 函数查找图中的城市节点,如果城市不存在,则给出提示。咨询钱最少模块图是针对用户查询花费最少的交通方式,通过 LeastMoneyPath 和 print_Money 函数来计算并输出路径及其费用。这些函数的设计体现了算法的核心逻辑,如初始化每条路径的距离为最大值,然后通过循环更新路径直到找到最短路径。 在设计和调试分析阶段,开发者对源代码进行了严谨的测试,确保算法的正确性和性能。程序的执行过程中,会进行错误处理和异常检测,以保证用户获得准确的信息。 程序设计体会部分,可能包含了作者在开发过程中的心得,比如对迪杰斯特拉算法的理解,如何优化代码以提高运行效率,以及如何平衡用户体验与性能的关系。此外,可能还讨论了在实际应用中遇到的问题以及解决策略。 全国交通咨询模拟系统是一个结合了数据结构(如图和路径)以及优化算法(迪杰斯特拉)的实用工具,旨在通过互联网为用户提供便捷、高效的交通咨询服务。它的设计不仅体现了技术实现,也充分考虑了用户需求和实际应用场景中的复杂性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】基于TensorFlow的卷积神经网络图像识别项目

![【实战演练】基于TensorFlow的卷积神经网络图像识别项目](https://img-blog.csdnimg.cn/20200419235252200.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzM3MTQ4OTQw,size_16,color_FFFFFF,t_70) # 1. TensorFlow简介** TensorFlow是一个开源的机器学习库,用于构建和训练机器学习模型。它由谷歌开发,广泛应用于自然语言
recommend-type

CD40110工作原理

CD40110是一种双四线双向译码器,它的工作原理基于逻辑编码和译码技术。它将输入的二进制代码(一般为4位)转换成对应的输出信号,可以控制多达16个输出线中的任意一条。以下是CD40110的主要工作步骤: 1. **输入与编码**: CD40110的输入端有A3-A0四个引脚,每个引脚对应一个二进制位。当你给这些引脚提供不同的逻辑电平(高或低),就形成一个四位的输入编码。 2. **内部逻辑处理**: 内部有一个编码逻辑电路,根据输入的四位二进制代码决定哪个输出线应该导通(高电平)或保持低电平(断开)。 3. **输出**: 输出端Y7-Y0有16个,它们分别与输入的编码相对应。当特定的
recommend-type

全国交通咨询系统C++实现源码解析

"全国交通咨询系统C++代码.pdf是一个C++编程实现的交通咨询系统,主要功能是查询全国范围内的交通线路信息。该系统由JUNE于2011年6月11日编写,使用了C++标准库,包括iostream、stdio.h、windows.h和string.h等头文件。代码中定义了多个数据结构,如CityType、TrafficNode和VNode,用于存储城市、交通班次和线路信息。系统中包含城市节点、交通节点和路径节点的定义,以及相关的数据成员,如城市名称、班次、起止时间和票价。" 在这份C++代码中,核心的知识点包括: 1. **数据结构设计**: - 定义了`CityType`为short int类型,用于表示城市节点。 - `TrafficNodeDat`结构体用于存储交通班次信息,包括班次名称(`name`)、起止时间(原本注释掉了`StartTime`和`StopTime`)、运行时间(`Time`)、目的地城市编号(`EndCity`)和票价(`Cost`)。 - `VNodeDat`结构体代表城市节点,包含了城市编号(`city`)、火车班次数(`TrainNum`)、航班班次数(`FlightNum`)以及两个`TrafficNodeDat`数组,分别用于存储火车和航班信息。 - `PNodeDat`结构体则用于表示路径中的一个节点,包含城市编号(`City`)和交通班次号(`TraNo`)。 2. **数组和变量声明**: - `CityName`数组用于存储每个城市的名称,按城市编号进行索引。 - `CityNum`用于记录城市的数量。 - `AdjList`数组存储各个城市的线路信息,下标对应城市编号。 3. **算法与功能**: - 系统可能实现了Dijkstra算法或类似算法来寻找最短路径,因为有`MinTime`和`StartTime`变量,这些通常与路径规划算法有关。 - `curPath`可能用于存储当前路径的信息。 - `SeekCity`函数可能是用来查找特定城市的函数,其参数是一个城市名称。 4. **编程语言特性**: - 使用了`#define`预处理器指令来设置常量,如城市节点的最大数量(`MAX_VERTEX_NUM`)、字符串的最大长度(`MAX_STRING_NUM`)和交通班次的最大数量(`MAX_TRAFFIC_NUM`)。 - `using namespace std`导入标准命名空间,方便使用iostream库中的输入输出操作。 5. **编程实践**: - 代码的日期和作者注释显示了良好的编程习惯,这对于代码维护和团队合作非常重要。 - 结构体的设计使得数据组织有序,方便查询和操作。 这个C++代码实现了全国交通咨询系统的核心功能,涉及城市节点管理、交通班次存储和查询,以及可能的路径规划算法。通过这些数据结构和算法,用户可以查询不同城市间的交通信息,并获取最优路径建议。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【实战演练】使用Seaborn和Plotly进行数据可视化项目

![【实战演练】使用Seaborn和Plotly进行数据可视化项目](https://ask.qcloudimg.com/http-save/yehe-5669851/lifus0nfda.jpeg) # 1. 数据可视化的基础** 数据可视化是指将数据转换为图形或图表,以帮助人们理解和解释数据。它是一种强大的工具,可以揭示数据中的模式、趋势和异常情况,从而帮助人们做出更好的决策。 数据可视化有许多不同的类型,包括条形图、折线图、散点图和饼图。每种类型都有其独特的优点和缺点,具体选择哪种类型取决于数据类型和要传达的信息。 在创建数据可视化时,重要的是要考虑以下因素: * **受众:**
recommend-type

Python的六种数据类型

Python是一种动态类型的高级编程语言,它的六种基本数据类型包括: 1. **数字类型(Numeric Types)**:主要有整型(int)、浮点型(float)、复数型(complex)。整型用于表示整数值,浮点型用于存储小数,复数型用于处理复数。 2. **字符串类型(String Type)**:用单引号('')或双引号("")包围的文本序列,用来存储文本数据。 3. **布尔类型(Boolean Type)**:只有两个值,True和False,表示逻辑判断的结果。 4. **列表类型(List Type)**:有序的可变序列,可以包含不同类型的元素。 5. **元组类型
recommend-type

DFT与FFT应用:信号频谱分析实验

"数字信号处理仿真实验教程,主要涵盖DFT(离散傅里叶变换)和FFT(快速傅里叶变换)的应用,适用于初学者进行频谱分析。" 在数字信号处理领域,DFT(Discrete Fourier Transform)和FFT(Fast Fourier Transform)是两个至关重要的概念。DFT是将离散时间序列转换到频域的工具,而FFT则是一种高效计算DFT的方法。在这个北京理工大学的实验中,学生将通过实践深入理解这两个概念及其在信号分析中的应用。 实验的目的在于: 1. 深化对DFT基本原理的理解,这包括了解DFT如何将时域信号转化为频域表示,以及其与连续时间傅里叶变换(DTFT)的关系。DFT是DTFT在有限个等间隔频率点上的取样,这有助于分析有限长度的离散信号。 2. 应用DFT来分析信号的频谱特性,这对于识别信号的频率成分至关重要。在实验中,通过计算和可视化DFT的结果,学生可以观察信号的幅度谱和相位谱,从而揭示信号的频率组成。 3. 通过实际操作,深入理解DFT在频谱分析中的作用,以及如何利用它来解释现实世界的现象并解决问题。 实验内容分为几个部分: (1)首先,给出了一个5点序列x,通过计算DFT并绘制幅度和相位图,展示了DFT如何反映信号的幅度和相位特性。 (2)然后,使用相同序列x,但这次通过FFT进行计算,并用茎图展示结果。FFT相比于DFT提高了计算效率,尤其是在处理大数据集时。 (3)进一步扩展,序列x通过添加零填充至128点,再次进行FFT计算。这样做可以提高频率分辨率,使得频谱分析更为精确。 (4)最后,通过一个包含两种正弦波的11点序列,演示了DFT如何提供DTFT的近似,当N增大时,DFT的结果更接近于DTFT。 实验通过MATLAB代码实现,学生可以在实际操作中熟悉这些概念,从而增强对数字信号处理理论的理解。通过这些实验,学生不仅能够掌握DFT和FFT的基本运算,还能学会如何利用它们来分析和解析复杂的信号结构。
recommend-type

关系数据表示学习

关系数据卢多维奇·多斯桑托斯引用此版本:卢多维奇·多斯桑托斯。关系数据的表示学习机器学习[cs.LG]。皮埃尔和玛丽·居里大学-巴黎第六大学,2017年。英语。NNT:2017PA066480。电话:01803188HAL ID:电话:01803188https://theses.hal.science/tel-01803188提交日期:2018年HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaireUNIVERSITY PIERRE和 MARIE CURIE计算机科学、电信和电子学博士学院(巴黎)巴黎6号计算机科学实验室D八角形T HESIS关系数据表示学习作者:Ludovic DOS SAntos主管:Patrick GALLINARI联合主管:本杰明·P·伊沃瓦斯基为满足计算机科学博士学位的要求而提交的论文评审团成员:先生蒂埃里·A·退休记者先生尤尼斯·B·恩