lu分解法matlab代码
时间: 2023-07-09 14:51:20 浏览: 114
以下是使用LU分解法求解线性方程组的MATLAB代码示例:
```matlab
function [x] = lu_solve(A,b)
% A: 系数矩阵
% b: 右侧常数
% x: 解向量
% 将系数矩阵A进行LU分解
[L,U] = lu(A);
% 将方程组转化为Ly=b, Ux=y的形式
y = L\b;
x = U\y;
end
```
其中,`lu`函数是MATLAB内置的LU分解函数,用于将系数矩阵进行LU分解。然后将方程组转化为Ly=b, Ux=y的形式,先求解Ly=b,再求解Ux=y,最终得到解向量x。
相关问题
matlab lu分解法代码
在MATLAB中,LU分解是一种线性代数求解系统常用的方法,它将矩阵A分解为两个下三角矩阵L和上三角矩阵U的乘积,即A=LU。这里是一个简单的LU分解的示例代码:
```matlab
function [L, U] = lu_decomposition(A)
% 检查输入是否为方阵
if size(A, 1) ~= size(A, 2)
error('Input matrix must be square');
end
% 初始化LU矩阵
L = eye(size(A));
U = A;
% 对每个元素进行行主元素消元
for i = 1:size(A, 1)-1
for j = i+1:size(A, 2)
% 计算U(i+1:end, j)除以U(i, i)
factor = U(i, i);
U(i+1:end, j) = U(i+1:end, j) / factor;
% 更新L矩阵
L(i+1:end, i) = L(i+1:end, i) - (U(i+1:end, j) * L(i, i));
end
end
% 返回上、下三角矩阵
L = triangular(L); % 确保L是下三角的
U = triangular(U); % 确保U是上三角的
end
```
你可以通过以下方式调用这个函数并检查结果:
```matlab
A = randn(5); % 创建一个随机的5x5矩阵作为例子
[L, U] = lu_decomposition(A);
% 解决线性方程组,比如 Ax = b,可以先通过 U * x' = b' 来找到临时解y,然后用 L * y = x
```
LU分解法matlab
LU分解是一种矩阵分解方法,将一个矩阵分解为一个下三角矩阵L和一个上三角矩阵U的乘积。在Matlab中,可以使用lu函数进行LU分解。
例如,对于一个3x3的矩阵A,可以使用以下代码进行LU分解:
```
[L,U] = lu(A)
```
其中,L为下三角矩阵,U为上三角矩阵。可以通过验证L和U的乘积是否等于A来检验分解是否正确。
阅读全文
相关推荐















