size mismatch for fc.weight: copying a param with shape torch.Size([1000, 2048]) from checkpoint, the shape in current model is torch.Size([100, 2048]). size mismatch for fc.bias: copying a param with shape torch.Size([1000]) from checkpoint, the shape in current model is torch.Size([100]).

时间: 2023-06-15 13:07:04 浏览: 99
这个错误提示意味着你正在尝试将一个形状为`torch.Size([1000, 2048])`的参数加载到一个形状为`torch.Size([100, 2048])`的模型中。同样地,你也尝试将一个形状为`torch.Size([1000])`的参数加载到一个形状为`torch.Size([100])`的模型中。这两种情况都导致了形状不匹配的错误。 这个错误通常是由于在加载预训练模型时,模型的某些部分与你的当前模型不兼容所导致的。解决这个问题的方法之一是在加载预训练模型之前检查你的模型的结构,确保它与预训练模型的结构相匹配。另外,你也可以尝试重新训练模型,使得它的结构与预训练模型相匹配。
相关问题

Error(s) in loading state_dict for LeNet: size mismatch for conv1.weight: copying a param with shape torch.Size([10, 1, 5, 5]) from checkpoint, the shape in current model is torch.Size([6, 1, 5, 5]). size mismatch for conv1.bias: copying a param with shape torch.Size([10]) from checkpoint, the shape in current model is torch.Size([6]). size mismatch for conv2.weight: copying a param with shape torch.Size([20, 10, 5, 5]) from checkpoint, the shape in current model is torch.Size([16, 6, 5, 5]). size mismatch for conv2.bias: copying a param with shape torch.Size([20]) from checkpoint, the shape in current model is torch.Size([16]). size mismatch for fc1.weight: copying a param with shape torch.Size([50, 320]) from checkpoint, the shape in current model is torch.Size([120, 256]). size mismatch for fc1.bias: copying a param with shape torch.Size([50]) from checkpoint, the shape in current model is torch.Size([120]). size mismatch for fc2.weight: copying a param with shape torch.Size([10, 50]) from checkpoint, the shape in current model is torch.Size([84, 120]). size mismatch for fc2.bias: copying a param with shape torch.Size([10]) from checkpoint, the shape in current model is torch.Size([84]).

这个错误信息提示我们在加载预训练模型的权重时,发现模型中的部分参数形状与当前创建的模型不匹配,具体来说,就是: - `conv1.weight`的形状应该为`(6, 1, 5, 5)`,但是预训练模型中的形状为`(10, 1, 5, 5)`; - `conv1.bias`的形状应该为`(6,)`,但是预训练模型中的形状为`(10,)`; - `conv2.weight`的形状应该为`(16, 6, 5, 5)`,但是预训练模型中的形状为`(20, 10, 5, 5)`; - `conv2.bias`的形状应该为`(16,)`,但是预训练模型中的形状为`(20,)`; - `fc1.weight`的形状应该为`(120, 256)`,但是预训练模型中的形状为`(50, 320)`; - `fc1.bias`的形状应该为`(120,)`,但是预训练模型中的形状为`(50,)`; - `fc2.weight`的形状应该为`(84, 120)`,但是预训练模型中的形状为`(10, 50)`; - `fc2.bias`的形状应该为`(84,)`,但是预训练模型中的形状为`(10,)`。 这个问题通常是由于预训练模型的结构与当前创建的模型结构不一致导致的。解决方法是在当前模型中手动修改这些参数的形状,使其与预训练模型的结构一致。

RuntimeError: Error(s) in loading state_dict for Wav2vec2Model: size mismatch for decoder.model.0.weight: copying a param with shape torch.Size([256, 512]) from checkpoint, the shape in current model is torch.Size([128, 512]). size mismatch for decoder.model.0.bias: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for decoder.model.3.weight: copying a param with shape torch.Size([64, 256]) from checkpoint, the shape in current model is torch.Size([7, 128]). size mismatch for decoder.model.3.bias: copying a param with shape torch.Size([64]) from checkpoint, the shape in current model is torch.Size([7]).如何解决报错请举例

这个错误是由于在加载预训练模型的参数时,模型的某些层的维度和预训练模型的参数维度不匹配导致的。解决这个问题的方法是调整模型的参数维度,使其与预训练模型的参数维度相匹配。下面是一个简单的示例: ```python import torch class MyModel(torch.nn.Module): def __init__(self): super(MyModel, self).__init__() self.encoder = torch.nn.Linear(512, 256) self.decoder = torch.nn.Linear(256, 512) def forward(self, x): x = self.encoder(x) x = self.decoder(x) return x model = MyModel() pretrained_model = torch.load("pretrained_model.pth") # 遍历预训练模型的参数,调整模型参数维度 for name, param in pretrained_model.items(): if name.startswith("decoder"): if "weight" in name: param = param[:256, :] if "bias" in name: param = param[:256] model_dict = model.state_dict() model_dict[name].copy_(param) # 在此处使用模型进行推理或训练 ``` 在上面的示例中,我们首先定义了一个自定义模型MyModel,其中包含一个512维的输入层和一个512维的输出层。然后我们加载了一个名为“pretrained_model.pth”的预训练模型,并遍历了其所有的参数。对于decoder层的参数,我们将其维度调整为与自定义模型相匹配。最后,我们使用调整后的模型进行推理或训练。

相关推荐

create LoRA network. base dim (rank): 64, alpha: 32 neuron dropout: p=None, rank dropout: p=None, module dropout: p=None create LoRA for Text Encoder: 72 modules. create LoRA for U-Net: 192 modules. enable LoRA for text encoder enable LoRA for U-Net Traceback (most recent call last): File "D:\lora_lian\sd-scripts\train_network.py", line 873, in <module> train(args) File "D:\lora_lian\sd-scripts\train_network.py", line 242, in train info = network.load_weights(args.network_weights) File "D:\lora_lian\sd-scripts\networks\lora.py", line 884, in load_weights info = self.load_state_dict(weights_sd, False) File "D:\lora_lian\python\lib\site-packages\torch\nn\modules\module.py", line 2041, in load_state_dict raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format( RuntimeError: Error(s) in loading state_dict for LoRANetwork: size mismatch for lora_unet_mid_block_attentions_0_proj_out.lora_up.weight: copying a param with shape torch.Size([1280, 128, 1, 1]) from checkpoint, the shape in current model is torch.Size([1280, 64, 1, 1]). Traceback (most recent call last): File "D:\lora_lian\python\lib\runpy.py", line 196, in _run_module_as_main return _run_code(code, main_globals, None, File "D:\lora_lian\python\lib\runpy.py", line 86, in _run_code exec(code, run_globals) File "D:\lora_lian\python\lib\site-packages\accelerate\commands\launch.py", line 1114, in <module> main() File "D:\lora_lian\python\lib\site-packages\accelerate\commands\launch.py", line 1110, in main launch_command(args) File "D:\lora_lian\python\lib\site-packages\accelerate\commands\launch.py", line 1104, in launch_command simple_launcher(args) File "D:\lora_lian\python\lib\site-packages\accelerate\commands\launch.py", line 567, in simple_launcher raise subprocess.CalledProcessError(returncode=process.returncode, cmd=cmd) subprocess.CalledProcessError: Command '['D:\\lora_lian\\python\\python.exe', './sd-scripts/train_network.py', '--config_file', 'D:\\lora_lian\\toml\\autosave\\20230709-112914.toml']' returned non-zero exit status 1. Training failed / 训练失败

最新推荐

学习JavaEE的day08

代码、理解图、资料、练习题

ICML 2023 - 可证明的动态多模态融合框架论文对应代码整理

我们对世界的感知是基于多种模态的,例如,触觉、视觉、听觉、嗅觉和味觉。随着传感技术的发展,我们可以轻松地收集各种形式的数据进行分析。例如,自动驾驶和可穿戴电气设备中的多传感器(Xiao等人,2020; Wen等人,2022),或医学诊断和治疗中的各种检查(Qiu等,2022; Acosta等人,2022年)。直觉上,融合来自不同模态的信息提供了探索跨模态相关性并获得更好性能的可能性。然而,<font size=6 color=color>**[以往工作的缺陷:]传统的融合方法**在很大程度上**忽略了不可靠的多模态数据的质量**</font>。在现实世界中,不同模态的质量通常会因意外的环境问题而变化。最近的一些研究已经从经验和理论上表明,多模态融合可能会在低质量的多模态数据上失败,例如,不平衡(Wang等人,2020年; Peng等人,2022; Huang等人,2022)、噪声或甚至损坏(Huang等人,2021 b)多模态数据。经验上,认识到多模态模型不能总是优于单模态模型,特别是在高噪声中(Scheunders & De Backer,2007; Eitel等人,2015; Si

一个存储库,了解开源代码的贡献流程.zip

一个存储库,了解开源代码的贡献流程.zip

Rtree-1.1.0-cp310-cp310-win_amd64.whl.zip

Rtree-1.1.0-cp310-cp310-win_amd64.whl.zip

ChatGPT和Bing AI的客户端实现。可用作Node.js模块、REST API服务器和CLI应用.zip

ChatGPT和Bing AI的客户端实现。可用作Node.js模块、REST API服务器和CLI应用.zip

步行高级机器人技术.doc

步行高级机器人技术.doc

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire

粒子群多目标算法matlab代码【MATLAB代码实现】定义优化问题参数

# 1. 粒子群多目标算法简介 ## 1.1 什么是粒子群算法? 粒子群算法是一种基于群体智能的优化算法,灵感来源于鸟群或鱼群等生物群体的行为。每个“粒子”代表问题空间中的一个候选解,而整个粒子群代表了候选解的一个群体。粒子在解空间中搜索最优解,通过个体的经验和群体的协作来不断调整自身位置和速度,从而逐步靠近最优解。 ## 1.2 粒子群算法在多目标优化中的应用 粒子群算法最初是针对单目标优化问题提出的,但后来被扩展应用到了多目标优化领域。与单目标优化不同,多目标优化需要考虑多个冲突的目标函数,因此粒子群算法的应用在多目标优化中具有一定的挑战性。 ## 1.3 粒子群多目标算法原理解

c语言本题要求编写程序,计算学生们的平均成绩,并统计不及格人数。题目保证输入输出均在整型范围内。

好的,下面是一个简单的 C 语言程序,可以帮助你计算学生们的平均成绩,并统计不及格人数: ```c #include <stdio.h> int main() { int n, sum = 0, fail = 0; scanf("%d", &n); // 输入学生数量 for (int i = 0; i < n; i++) { int score; scanf("%d", &score); // 输入学生的成绩 sum += score; // 累加学生的成绩 if (score < 60) {

资料计算机二级Python真题及答案解析1练习.pdf

。。。