旅游导游系统问题 (1)问题描述 假设一个旅游景区由n个不同景点组成(有向网),并用带权邻接矩阵表示,权值表示两个景点间的步行时间,试编写程序求任意两个景点间的最短步行时间。 (2)基本要求 实际上是求有向图中任意两顶点间的最短路径问题。利用Floyed算法编写函数实现求图的任意两点间的最短路径。(1)给出程序设计的基本思想、原理和算法描述。

时间: 2024-03-22 16:37:31 浏览: 43
(1) 基本思想: Floyd算法是一种动态规划算法,用于求解有向图中任意两个顶点之间的最短路径。通过比较从一个顶点到另一个顶点的路径的长度,不断更新最短路径,直到得到所有顶点之间的最短路径。 (2) 原理和算法描述: Floyd算法的基本原理是利用动态规划的思想,通过一系列的状态转移来求解最短路径问题。具体算法步骤如下: 1. 初始化距离矩阵D,即将有向图中的边权值存储在一个二维数组D中,若i和j之间有边,则D[i][j]等于边权值,否则为无穷大。 2. 对于每一个顶点k,尝试通过k点来缩短i和j之间的距离,即比较D[i][j]和D[i][k]+D[k][j]的大小,如果D[i][j]>D[i][k]+D[k][j],则更新D[i][j]为D[i][k]+D[k][j]。 3. 重复步骤2,直到所有的顶点都被尝试过为止。 Floyd算法的时间复杂度为O(n^3),其中n为顶点的数目。 (3) 算法实现: 下面是基于C++语言实现Floyd算法的代码: ```c++ #include <iostream> #include <cstring> using namespace std; const int MAXN = 100; const int INF = 0x3f3f3f3f; int D[MAXN][MAXN]; // 存储边权值的距离矩阵 void Floyd(int N) { for (int k = 0; k < N; k++) { for (int i = 0; i < N; i++) { for (int j = 0; j < N; j++) { if (D[i][j] > D[i][k] + D[k][j]) { D[i][j] = D[i][k] + D[k][j]; } } } } } int main() { int N, M; cin >> N >> M; // 输入顶点数和边数 // 初始化距离矩阵 memset(D, INF, sizeof(D)); for (int i = 0; i < N; i++) { D[i][i] = 0; } // 输入边权值 int u, v, w; for (int i = 0; i < M; i++) { cin >> u >> v >> w; D[u][v] = w; } // 调用Floyd算法求解任意两点间的最短路径 Floyd(N); // 输出距离矩阵 for (int i = 0; i < N; i++) { for (int j = 0; j < N; j++) { cout << D[i][j] << " "; } cout << endl; } return 0; } ``` 以上代码实现了输入顶点数和边数,构建邻接矩阵,并调用Floyd算法输出任意两点间的最短路径。

相关推荐

最新推荐

recommend-type

数据结构课程设计报告----景区旅游信息管理系统.doc

《景区旅游信息管理系统》课程设计报告探讨了如何利用数据结构技术构建一个系统,以满足游客在景区内寻找最佳游览路线和最短距离的需求。在这个系统中,数据结构扮演着核心角色,通过有效的算法实现了多种功能。 1....
recommend-type

Python根据已知邻接矩阵绘制无向图操作示例

运行以上代码后,将得到一个根据邻接矩阵绘制的无向图。`networkx`库提供了多种布局方式,如`spring_layout`, `random_layout`, `fruchterman_reingold_layout`等,可以根据需要选择合适的布局方式来展示图的结构。 ...
recommend-type

旅游导游系统问题课程设计

【旅游导游系统问题课程设计】...总结来说,旅游导游系统课程设计的目标是利用图论中的邻接矩阵和Dijkstra算法,为一个虚拟的旅游景区构建一个计算最短步行时间的程序。这有助于游客规划最佳参观路线,提高游览效率。
recommend-type

判断一个无向图是否为连通图的方法

判断一个无向图是否为连通图是一个常见的问题,尤其在图论和算法设计中。解决这个问题的方法通常基于深度优先搜索(DFS)或广度优先搜索(BFS)。这两种方法都是遍历图中的所有节点,检查是否存在从任意一个节点出发可以...
recommend-type

C语言实现图的邻接矩阵存储操作

邻接矩阵是一个方阵,矩阵的行和列均对应图中的顶点。矩阵的元素值表示两个顶点之间是否存在边或弧。0表示不存在边或弧,1表示存在边或弧。 C语言实现 下面是使用C语言实现图的邻接矩阵存储操作的代码实现: ```c ...
recommend-type

C++多态实现机制详解:虚函数与早期绑定

C++多态性实现机制是面向对象编程的重要特性,它允许在运行时根据对象的实际类型动态地调用相应的方法。本文主要关注于虚函数的使用,这是实现多态的关键技术之一。虚函数在基类中声明并被标记为virtual,当派生类重写该函数时,基类的指针或引用可以正确地调用派生类的版本。 在例1-1中,尽管定义了fish类,但基类animal中的breathe()方法并未被声明为虚函数。因此,当我们创建一个fish对象fh,并将其地址赋值给animal类型的指针pAn时,编译器在编译阶段就已经确定了函数的调用地址,这就是早期绑定。这意味着pAn指向的是animal类型的对象,所以调用的是animal类的breathe()函数,而不是fish类的版本,输出结果自然为"animalbreathe"。 要实现多态性,需要在基类中将至少一个成员函数声明为虚函数。这样,即使通过基类指针调用,也能根据实际对象的类型动态调用相应的重载版本。在C++中,使用关键字virtual来声明虚函数,如`virtual void breathe();`。如果在派生类中重写了这个函数,例如在fish类中定义`virtual void breathe() { cout << "fishbubble" << endl; }`,那么即使使用animal类型的指针,也能调用到fish类的breathe()方法。 内存模型的角度来看,当一个派生类对象被赋值给基类指针时,基类指针只存储了派生类对象的基类部分的地址。因此,即使进行类型转换,也只是访问基类的公共成员,而不会访问派生类特有的私有或保护成员。这就解释了为什么即使指针指向的是fish对象,调用的还是animal的breathe()函数。 总结来说,C++多态性是通过虚函数和早期/晚期绑定来实现的。理解这两个概念对于编写可扩展和灵活的代码至关重要。在设计程序时,合理使用多态能够提高代码的复用性和可维护性,使得程序结构更加模块化。通过虚函数,可以在不改变接口的情况下,让基类指针动态调用不同类型的子类对象上的同名方法,从而展现C++强大的继承和封装特性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Parallelization Techniques for Matlab Autocorrelation Function: Enhancing Efficiency in Big Data Analysis

# 1. Introduction to Matlab Autocorrelation Function The autocorrelation function is a vital analytical tool in time-domain signal processing, capable of measuring the similarity of a signal with itself at varying time lags. In Matlab, the autocorrelation function can be calculated using the `xcorr
recommend-type

matlab处理nc文件,nc文件是1979-2020年的全球降雨数据,获取一个省份区域内的日降雨量,代码怎么写

在MATLAB中处理`.nc`(NetCDF)文件通常需要使用`netcdf`函数库,它是一个用于读写多种科学数据格式的工具。对于全球降雨数据,你可以按照以下步骤编写代码: 1. 安装必要的库(如果还没有安装): ```matlab % 如果你尚未安装 netcdf 包,可以安装如下: if ~exist('netcdf', 'dir') disp('Installing the NetCDF toolbox...') addpath(genpath(fullfile(matlabroot,'toolbox','nco'))); end ``` 2. 加载nc文件并查看其结
recommend-type

Java多线程与异常处理详解

"Java多线程与进程调度是编程领域中的重要概念,尤其是在Java语言中。多线程允许程序同时执行多个任务,提高系统的效率和响应速度。Java通过Thread类和相关的同步原语支持多线程编程,而进程则是程序的一次执行实例,拥有独立的数据区域。线程作为进程内的执行单元,共享同一地址空间,减少了通信成本。多线程在单CPU系统中通过时间片轮转实现逻辑上的并发执行,而在多CPU系统中则能实现真正的并行。 在Java中,异常处理是保证程序健壮性的重要机制。异常是程序运行时发生的错误,通过捕获和处理异常,可以确保程序在遇到问题时能够优雅地恢复或终止,而不是崩溃。Java的异常处理机制使用try-catch-finally语句块来捕获和处理异常,提供了更高级的异常类型以及finally块确保关键代码的执行。 Jdb是Java的调试工具,特别适合调试多线程程序。它允许开发者设置断点,查看变量状态,单步执行代码,从而帮助定位和解决问题。在多线程环境中,理解线程的生命周期和状态(如新建、运行、阻塞、等待、结束)以及如何控制线程的执行顺序和同步是至关重要的。 Java的多线程支持包括Thread类和Runnable接口。通过继承Thread类或者实现Runnable接口,用户可以创建自己的线程。线程间同步是多线程编程中的一大挑战,Java提供了synchronized关键字、wait()、notify()和notifyAll()等方法来解决这个问题,防止数据竞争和死锁的发生。 在实际应用中,多线程常用于网络编程、数据库访问、GUI应用程序(如Swing或JavaFX)的事件处理、服务器端的并发处理等场景。例如,一个Web服务器可能需要同时处理多个客户端请求,这时使用多线程可以显著提升性能。此外,多线程在动画制作、游戏开发、多媒体应用等领域也发挥着重要作用,因为它允许同时处理渲染、计算和用户交互等多个任务。 Java的多线程与进程调度是构建高效、健壮应用的基础,而异常处理则提升了程序的稳定性。通过深入理解和熟练运用这些概念,开发者可以创建出更加灵活和可靠的软件系统。"