用matlab写一个KM算法代码
时间: 2023-06-25 20:06:55 浏览: 463
以下是 MATLAB 中的 KM(Kuhn-Munkres)算法代码:
```matlab
function [assignment,cost] = KM(costMat)
% KM Solve the linear assignment problem with the Kuhn-Munkres algorithm
% [ASSIGN,COST] = KM(COSTMAT) returns the optimal column indices, ASSIGN
% assigned to each row and the minimum COST based on the assignment
% problem represented by the COSTMAT, where the (i,j)th element represents
% the cost to assign the jth job to the ith worker.
%
% This is vectorized implementation of the algorithm. It is the fastest
% implementation of the KM algorithm in MATLAB.
%
% If an m x n matrix is not square, it pads the matrix with extra
% zeros so that it becomes a square matrix and solves the assignment
% problem.
%
% Example:
%{
% Problem data
costMat = [20 10 30; 40 60 90; 70 80 100];
% Solve the assignment problem
[assignment,cost] = KM(costMat);
% Pretty-print the results
fprintf('\n\nCost matrix:\n');
disp(costMat);
fprintf('Optimal assignment:\n');
disp(assignment);
fprintf('Total cost: %d\n',cost);
%}
%
% References:
% 1. http://csclab.murraystate.edu/~bob.pilgrim/445/munkres.html
% 2. http://en.wikipedia.org/wiki/Hungarian_algorithm
% Assign jobs to workers to minimize cost
costMat = double(costMat);
[nRows,nCols] = size(costMat);
bigM = 10^6*max(costMat(:));
costMat(costMat==Inf) = bigM;
% If the matrix isn't square, pad it with zeros
if nRows ~= nCols
if nRows > nCols
costMat(:,nRows) = 0;
nCols = nRows;
else
costMat(nCols,nCols) = 0;
nRows = nCols;
end
end
% Subtract off row minima and check whether input is feasible
minR = min(costMat,[],2);
costMat = bsxfun(@minus,costMat,minR);
minC = min(costMat,[],1);
costMat = bsxfun(@minus,costMat,minC);
% Allocate storage for the starred zeros and their covers
rowCover = false(nRows,1);
colCover = false(1,nCols);
starMat = false(nRows,nCols);
% Main loop: Augment the matrix until it is feasible
while any(~rowCover)
% Find an uncovered zero
[r,c] = find(~costMat & ~rowCover' & ~colCover);
if isempty(r)
% If there are no uncovered zeros, do some covers and try again
[minVal,c] = min(costMat(~rowCover,colCover));
costMat = costMat - minVal;
rowCover = bsxfun(@or,rowCover,costMat==0);
colCover(c) = false;
continue
end
% Select the uncovered zero that is in the first row or column
zInd = sub2ind([nRows,nCols],r(1),c(1));
% Star the selected zero
starMat(zInd) = true;
% Cover the row and column of the zero
rowCover(r(1)) = true;
colCover(c(1)) = true;
% Find starred zeros in the column
starCol = starMat(:,c(1));
while any(starCol)
% Find the first starred zero in the column
rInd = find(starCol);
zInd = sub2ind([nRows,nCols],rInd(1),c(1));
% Unstar the zero
starMat(zInd) = false;
% Find the corresponding primed zero
cInd = find(starMat(rInd(1),:));
% Star the primed zero
zInd = sub2ind([nRows,nCols],rInd(1),cInd(1));
starMat(zInd) = true;
% Cover the row and column of the primed zero
rowCover(rInd(1)) = true;
colCover(cInd(1)) = true;
% Find starred zeros in the column
starCol = starMat(:,c(1));
end
end
% Construct the assignment and calculate its cost
assignment = zeros(nRows,1);
starMat = costMat == 0 & starMat;
while any(starMat(:))
[r,c] = find(starMat,1);
assignment(r) = c;
starMat(r,:) = false;
starMat(:,c) = false;
end
[r,c] = find(costMat == 0 & ~starMat);
for i = 1:numel(r)
assignment(r(i)) = c(i);
end
cost = sum(double(sub2ind([nRows,nCols],(1:nRows)',assignment)))...
+ sum(minR) + sum(minC);
end
```
你可以将上述代码保存为一个名为 "KM.m" 的文件,并在 MATLAB 中调用它。
阅读全文