def __init__(self, in_channels=3, features=[64, 128, 256, 512]): super().__init__() self.initial = nn.Sequential(
时间: 2023-11-14 11:05:32 浏览: 134
这是一个 PyTorch 中的类,用于创建一个卷积神经网络模型。这个模型包含了四个卷积块,每个卷积块包含了卷积层、批归一化层和激活函数层。
- in_channels:输入数据的通道数,对于 RGB 图像,通道数为 3。
- features:一个包含四个元素的列表,分别表示每个卷积块的输出通道数,也就是每个卷积块中卷积层输出的特征图的通道数。
在初始化函数中,首先定义了输入层,它包含了一个卷积层、一个批归一化层和一个激活函数层。接下来,定义了四个卷积块,每个卷积块都包含了卷积层、批归一化层和激活函数层。在每个卷积块中,卷积层的输入通道数等于上一个卷积块的输出通道数,卷积层的输出通道数等于当前卷积块的输出通道数。这样,随着网络的加深,特征图的通道数逐渐增加,可以提取更加复杂的特征。最后,定义了一个平均池化层和一个全连接层,用于对特征图进行降维和分类。
相关问题
翻译class Block1(nn.Module): def __init__(self, in_channels, out_channels): super(Block1, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.block = nn.Sequential( nn.Conv2d(in_channels=self.in_channels, out_channels=self.out_channels, kernel_size=3, stride=1, padding=1), nn.BatchNorm2d(num_features=self.out_channels), nn.ReLU(), ) def forward(self, inputs): ans = self.block(inputs) # print('ans shape: ', ans.shape) return ans
定义了一个名为Block1的继承自nn.Module的类,该类具有两个参数:输入通道数和输出通道数。在初始化函数中,调用父类的构造函数,并将输入和输出通道数存储到类的实例变量中。该类包含一个序列化的卷积神经网络块,其中包括一个2D卷积层,一个批量归一化层和一个ReLU激活函数。在前向传递函数中,将输入数据传递给该卷积神经网络块,并返回输出。注释中的代码“print('ans shape: ', ans.shape)”是一行注释代码,用于检查输出张量的形状。
class Positional_GAT(torch.nn.Module): def __init__(self, in_channels, out_channels, n_heads, location_embedding_dim, filters_1, filters_2, dropout): super(Positional_GAT, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.n_heads = n_heads self.filters_1 = filters_1 self.filters_2 = filters_2 self.dropout = dropout self.location_embedding_dim = location_embedding_dim self.setup_layers() def setup_layers(self): self.GAT_1 = GATConv(in_channels=self.in_channels,out_channels=self.filters_1, heads=self.n_heads, dropout=0.1) self.GAT_2 = GATConv(in_channels=self.filters_1 * self.n_heads + self.location_embedding_dim, out_channels=self.out_channels, heads=self.n_heads, dropout=0.1, concat=False) def forward(self, edge_indices, features, location_embedding): features = torch.cat((features, location_embedding), dim=-1) features = self.GAT_1(features, edge_indices) features = torch.nn.functional.relu(features) features = torch.nn.functional.dropout(features, p=self.dropout, training=self.training) features = torch.cat((features, location_embedding), dim=-1) features = self.GAT_2(features, edge_indices) return features
这段代码实现了一个名为Positional_GAT的模型,它基于GAT(Graph Attention Network)模型,并添加了位置嵌入(location embedding)来考虑节点在图中的位置信息。具体来说,该模型包含一个GATConv层(表示第一层GAT),它将输入的特征向量(features)和边的索引(edge_indices)作为输入,并输出一个新的特征向量。第二层GATConv层将第一层的输出、位置嵌入和边的索引作为输入,并输出最终的特征向量。在模型的前向传播过程中,将输入的特征向量和位置嵌入在最开始的时候拼接在一起,然后经过第一层GATConv层进行处理,接着经过ReLU激活函数和dropout层。最后再次将特征向量和位置嵌入拼接在一起,经过第二层GATConv层得到输出结果。整个模型可以用于图分类、节点分类等任务。
阅读全文