为我用python写一个DQN训练网络并解释
时间: 2024-05-06 19:20:50 浏览: 100
DQN是一种深度强化学习算法,用于解决强化学习问题。它使用神经网络来学习状态和动作之间的映射,并使用经验回放技术来训练网络。以下是使用Python编写DQN训练网络的基本步骤:
1. 导入必要的库和模块
```python
import gym
import numpy as np
import random
from collections import deque
from keras.models import Sequential
from keras.layers import Dense
from keras.optimizers import Adam
```
2. 定义DQN网络
```python
class DQNAgent:
def __init__(self, state_size, action_size):
self.state_size = state_size
self.action_size = action_size
self.memory = deque(maxlen=2000)
self.gamma = 0.95
self.epsilon = 1.0
self.epsilon_min = 0.01
self.epsilon_decay = 0.995
self.learning_rate = 0.001
self.model = self._build_model()
def _build_model(self):
model = Sequential()
model.add(Dense(24, input_dim=self.state_size, activation='relu'))
model.add(Dense(24, activation='relu'))
model.add(Dense(self.action_size, activation='linear'))
model.compile(loss='mse', optimizer=Adam(lr=self.learning_rate))
return model
```
3. 定义记忆回放函数
```python
def remember(self, state, action, reward, next_state, done):
self.memory.append((state, action, reward, next_state, done))
def replay(self, batch_size):
minibatch = random.sample(self.memory, batch_size)
for state, action, reward, next_state, done in minibatch:
target = reward
if not done:
target = (reward + self.gamma * np.amax(self.model.predict(next_state)[0]))
target_f = self.model.predict(state)
target_f[0][action] = target
self.model.fit(state, target_f, epochs=1, verbose=0)
if self.epsilon > self.epsilon_min:
self.epsilon *= self.epsilon_decay
```
4. 定义动作选择函数
```python
def act(self, state):
if np.random.rand() <= self.epsilon:
return random.randrange(self.action_size)
act_values = self.model.predict(state)
return np.argmax(act_values[0])
```
5. 训练DQN网络
```python
env = gym.make('CartPole-v1')
state_size = env.observation_space.shape[0]
action_size = env.action_space.n
agent = DQNAgent(state_size, action_size)
batch_size = 32
for e in range(EPISODES):
state = env.reset()
state = np.reshape(state, [1, state_size])
for time in range(500):
action = agent.act(state)
next_state, reward, done, _ = env.step(action)
reward = reward if not done else -10
next_state = np.reshape(next_state, [1, state_size])
agent.remember(state, action, reward, next_state, done)
state = next_state
if done:
print("episode: {}/{}, score: {}, e: {:.2}"
.format(e, EPISODES, time, agent.epsilon))
break
if len(agent.memory) > batch_size:
agent.replay(batch_size)
```
以上代码使用CartPole-v1环境对DQN网络进行训练。每个episode的最大步数为500,如果在该步数内未成功,则结束该episode并将其记忆加入经验回放缓冲区中。完成一个episode后,使用记忆回放函数对网络进行训练,直到达到最小epsilon值。在训练过程中会输出每个episode的得分和当前epsilon值。
阅读全文