用牛顿迭代法编写c语言程序求方程x-e^-x=0的根
时间: 2024-03-12 16:48:14 浏览: 182
【老生谈算法】牛顿迭代法求解方程的根matlab程序.doc
5星 · 资源好评率100%
好的,我们可以按照上面所述的步骤,来编写求解方程x-e^-x=0的根的牛顿迭代法的C语言程序。具体代码如下:
```c
#include <stdio.h>
#include <math.h>
double f(double x) { //定义函数f(x)=x-e^(-x)
return x - exp(-x);
}
double df(double x) { //定义导数f'(x)=1+e^(-x)
return 1 + exp(-x);
}
int main() {
double x0, x1, eps;
int max_iter, iter;
printf("请输入初始值x0:");
scanf("%lf", &x0);
printf("请输入精度要求eps:");
scanf("%lf", &eps);
printf("请输入最大迭代次数max_iter:");
scanf("%d", &max_iter);
iter = 0;
while (iter < max_iter) {
x1 = x0 - f(x0) / df(x0); //根据牛顿迭代公式计算x1
if (fabs(x1 - x0) < eps) { //判断是否满足精度要求
printf("迭代次数:%d\n", iter);
printf("方程的根为:%lf\n", x1);
return 0;
}
x0 = x1;
iter++;
}
printf("迭代次数达到最大值,未能满足精度要求!\n");
return 0;
}
```
在程序中,我们先定义了函数f(x)和它的导数df(x),然后通过用户输入初始值x0、精度要求eps和最大迭代次数max_iter,来进行牛顿迭代计算。在每次迭代中,根据牛顿迭代公式计算出下一个近似解x1,然后判断是否满足精度要求,如果满足,则输出迭代次数和方程的根。如果迭代次数达到最大值,仍未满足精度要求,则输出相应的提示信息。
阅读全文