double adcval=0; #define FFT_LENGTH 1024 uint16_t pre_adcval[321]={0}; float data; uint16_t adc_value[FFT_LENGTH] = {0}; uint16_t flag1 = 1;//用于刚上电显示初始的波形 uint16_t adc_flag = 0;//adc搬运完成标志 float max=0,sqrt_u,adcMean = 0; float fft_inputbuf[FFT_LENGTH*2];
时间: 2023-12-06 12:42:25 浏览: 62
这段代码看起来是在做傅里叶变换的相关操作,可以看到定义了 FFT_LENGTH 为 1024,同时定义了一些变量用于存储 ADC 采集的数据。
其中 pre_adcval 数组的大小是 321,不太清楚这个数值的来源和含义,可能是之前的开发者为了实现某个功能而定义的。adc_value 数组的大小是 FFT_LENGTH,用于存储采集到的 ADC 数据。
fft_inputbuf 数组的大小是 FFT_LENGTH*2,用于存储经过预处理后的数据,即将 ADC 数据存储到数组中,并将其转换为复数形式。
max、sqrt_u、adcMean 这些变量的含义不是很明确,需要结合具体的代码逻辑进行理解。
相关问题
#include "arduinoFFT.h" arduinoFFT FFT = arduinoFFT(); const uint16_t samples = 64; const double signalFrequency = 1000; const double samplingFrequency = 5000; const uint8_t amplitude = 100; double vReal[samples]; double vImag[samples]; #define SCL_INDEX 0x00 #define SCL_TIME 0x01 #define SCL_FREQUENCY 0x02 #define SCL_PLOT 0x03 void setup() { Serial.begin(115200); while(!Serial); Serial.println("Ready"); } void loop() { double cycles = (((samples-1) * signalFrequency) / samplingFrequency); for (uint16_t i = 0; i < samples; i++) { vReal[i] = int8_t((amplitude * (sin((i * (twoPi * cycles)) / samples))) / 2.0); vImag[i] = 0.0; } Serial.println("Data:"); PrintVector(vReal, samples, SCL_TIME); FFT.Windowing(vReal, samples, FFT_WIN_TYP_HAMMING, FFT_FORWARD); /* Weigh data */ Serial.println("Weighed data:"); PrintVector(vReal, samples, SCL_TIME); FFT.Compute(vReal, vImag, samples, FFT_FORWARD); /* Compute FFT */ Serial.println("Computed Real values:"); PrintVector(vReal, samples, SCL_INDEX); Serial.println("Computed Imaginary values:"); PrintVector(vImag, samples, SCL_INDEX); FFT.ComplexToMagnitude(vReal, vImag, samples); /* Compute magnitudes */ Serial.println("Computed magnitudes:"); PrintVector(vReal, (samples >> 1), SCL_FREQUENCY); double x; double v; FFT.MajorPeak(vReal, samples, samplingFrequency, &x, &v); Serial.print(x, 6); Serial.print(", "); Serial.println(v, 6); while(1); } void PrintVector(double *vData, uint16_t bufferSize, uint8_t scaleType) { for (uint16_t i = 0; i < bufferSize; i++) { double abscissa; switch (scaleType) { case SCL_INDEX: abscissa = (i * 1.0); break; case SCL_TIME: abscissa = ((i * 1.0) / samplingFrequency); break; case SCL_FREQUENCY: abscissa = ((i * 1.0 * samplingFrequency) / samples); break; } Serial.print(abscissa, 6); if(scaleType==SCL_FREQUENCY) Serial.print("Hz"); Serial.print(" "); Serial.println(vData[i], 4); } Serial.println(); } 根据此历程中fft转换的方法修改oled代码
根据你提供的代码,你想要修改 OLED 显示代码来显示 FFT 转换的结果。我已经修改了代码,添加了 OLED 显示的相关部分。请注意,这里假设你已经连接了 OLED 显示屏并正确配置了 Arduino 板。
```c++
#include <Wire.h>
#include <Adafruit_GFX.h>
#include <Adafruit_SSD1306.h>
#include "arduinoFFT.h"
#define OLED_RESET 4
Adafruit_SSD1306 display(OLED_RESET);
arduinoFFT FFT = arduinoFFT();
const uint16_t samples = 64;
const double signalFrequency = 1000;
const double samplingFrequency = 5000;
const uint8_t amplitude = 100;
double vReal[samples];
double vImag[samples];
void setup()
{
Serial.begin(115200);
while (!Serial)
;
Serial.println("Ready");
display.begin(SSD1306_SWITCHCAPVCC, 0x3C);
display.clearDisplay();
display.setTextColor(WHITE);
display.setTextSize(1);
}
void loop()
{
double cycles = (((samples - 1) * signalFrequency) / samplingFrequency);
for (uint16_t i = 0; i < samples; i++)
{
vReal[i] = int8_t((amplitude * (sin((i * (twoPi * cycles)) / samples))) / 2.0);
vImag[i] = 0.0;
}
display.clearDisplay();
Serial.println("Data:");
PrintVector(vReal, samples, SCL_TIME);
FFT.Windowing(vReal, samples, FFT_WIN_TYP_HAMMING, FFT_FORWARD);
Serial.println("Weighed data:");
PrintVector(vReal, samples, SCL_TIME);
FFT.Compute(vReal, vImag, samples, FFT_FORWARD);
Serial.println("Computed Real values:");
PrintVector(vReal, samples, SCL_INDEX);
Serial.println("Computed Imaginary values:");
PrintVector(vImag, samples, SCL_INDEX);
FFT.ComplexToMagnitude(vReal, vImag, samples);
Serial.println("Computed magnitudes:");
PrintVector(vReal, (samples >> 1), SCL_FREQUENCY);
double x;
double v;
FFT.MajorPeak(vReal, samples, samplingFrequency, &x, &v);
Serial.print(x, 6);
Serial.print(", ");
Serial.println(v, 6);
// 显示 FFT 转换的结果
display.setCursor(0, 0);
display.print("Frequency: ");
display.println(x, 6);
display.print("Magnitude: ");
display.println(v, 6);
display.display();
while (1)
;
}
void PrintVector(double *vData, uint16_t bufferSize, uint8_t scaleType)
{
for (uint16_t i = 0; i < bufferSize; i++)
{
double abscissa;
switch (scaleType)
{
case SCL_INDEX:
abscissa = (i * 1.0);
break;
case SCL_TIME:
abscissa = ((i * 1.0) / samplingFrequency);
break;
case SCL_FREQUENCY:
abscissa = ((i * 1.0 * samplingFrequency) / samples);
break;
}
Serial.print(abscissa, 6);
if (scaleType == SCL_FREQUENCY)
Serial.print("Hz");
Serial.print(" ");
Serial.println(vData[i], 4);
}
Serial.println();
}
```
在这个修改后的代码中,我添加了 OLED 显示的相关部分。在 `loop` 函数中,我们在每次进行 FFT 转换后,通过 `display` 对象显示频率和幅值的结果。
请确保你已经连接了 OLED 显示屏,并将其引脚与 Arduino 板正确连接。如果需要,你可以根据 OLED 显示屏的具体型号和引脚配置进行相应的修改。
希望这个修改后的代码能够满足你的需求!如果你还有其他问题,请随时提问。
clear;clear;clc; fs = 8000; % 采样频率 t = 0:1/fs:1 ;% 采样时间 f = 2000; % 方波信号频率 x = square(2*pi*f*t); % 生成方波信号 N = length(x)-1; % 信号长度保证为正整数 % 计算基4FFT和频谱 X = fft(x, N/4); X_mag = abs(X); X_mag_norm = X_mag / max(X_mag); % 计算谐波失真度和谐波的归一化振幅 harmonics = 5; % 要计算的谐波次数 thd = 0; harmonic_amp_norm = zeros(1, harmonics); for k = 1:harmonics harmonic_amp_norm(k) = X_mag_norm(k*4+1); thd = thd + harmonic_amp_norm(k)^2; end thd = sqrt(thd) / harmonic_amp_norm(1) * 10; %打印失真度和归一化振幅图像 fprintf('前5个谐波分量的归一化振幅为:\n'); fprintf('%f\n', harmonic_amp_norm); fprintf('总谐波失真度:\n'); fprintf('%f\n',thd ); % 生成失真度和归一化振幅图像 figure(); subplot(211); stem(0:harmonics-1, harmonic_amp_norm); title('谐波振幅 (归一化)'); xlabel('谐波数'); ylabel('振幅'); subplot(212); plot(X_mag_norm); title(sprintf('总谐波失真度:THD = %.2f%%', thd)); xlabel('0~2000频率'); ylabel('振幅'); %生成dat文件 fid = fopen('C:\ti\myprojects\11\week2.dat','w'); fprintf(fid,'1651 2 0x8000 8000\n'); fprintf(fid,'%d\n',floor(x(1:N)*4095)); fclose(fid);通过生成的dat文件生成ccs中的C语言
您可以使用以下的 C 语言代码将生成的 `week2.dat` 文件读入到数组中,然后将数组中的数据写入到 DAC 寄存器中,以实现方波信号的输出:
```c
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <stdbool.h>
#include <math.h>
#define SAMPLE_RATE 8000
#define MAX_AMPLITUDE 4095
// 读取文件中的数据,并将数据存储到数组中
bool loadDataFromFile(const char* filename, int16_t* data, uint32_t size)
{
FILE* file = fopen(filename, "r");
if (file == NULL) {
printf("Failed to open file %s\n", filename);
return false;
}
// 读取文件头
int16_t header[4];
if (fread(header, sizeof(int16_t), 4, file) != 4) {
printf("Failed to read file header\n");
fclose(file);
return false;
}
// 检查文件头是否合法
if (header[0] != 1651 || header[1] != 2) {
printf("Invalid file header\n");
fclose(file);
return false;
}
// 读取数据
for (uint32_t i = 0; i < size; i++) {
int16_t value;
if (fscanf(file, "%hd", &value) != 1) {
printf("Failed to read data at index %d\n", i);
fclose(file);
return false;
}
data[i] = value;
}
fclose(file);
return true;
}
void main(void)
{
// 读取数据
const char* filename = "C:\\ti\\myprojects\\11\\week2.dat";
uint32_t dataSize = 8000;
int16_t data[dataSize];
if (!loadDataFromFile(filename, data, dataSize)) {
return;
}
// 输出数据
for (uint32_t i = 0; i < dataSize; i++) {
// 将数据缩放到 DAC 可以接受的范围
int16_t value = data[i] / 4095.0f * MAX_AMPLITUDE + MAX_AMPLITUDE;
// 输出到 DAC 寄存器
// TODO: 将 value 输出到 DAC 寄存器
}
}
```
在代码中,`loadDataFromFile` 函数用于读取文件中的数据,并将数据存储到数组中。`main` 函数中,首先读取 `week2.dat` 文件中的数据,然后对数据进行缩放,最后将数据输出到 DAC 寄存器中。由于不清楚您使用的具体的 DSP 芯片型号和开发板类型,因此无法提供具体的输出代码。您需要根据您的硬件和软件条件进行相应的修改,以实现数据的输出。
阅读全文