rot = rot.from_euler('z', -angle).as_matrix()[0:2, 0:2]是啥意思
时间: 2023-09-26 22:03:20 浏览: 233
rot = rot.from_euler('z', -angle).as_matrix()[0:2, 0:2] 表示rot是一个旋转矩阵,通过将绕z轴旋转角度为-angle的旋转应用于单位矩阵上得到。这个旋转矩阵的维度是2×2,只保留第一行和第二行以及第一列和第二列。所以这个rot矩阵可以用来将一个二维向量绕z轴逆时针旋转-angle角度。
相关问题
程序提示AttributeError: 'ImageThread' object has no attribute '_dgl',优化程序 def __init__(self, pipeline, color_label, depth_label, interval, color_photo_dir, depth_photo_dir): super().__init__() self.pipeline = pipeline self.color_label = color_label self.depth_label = depth_label self.is_running = True self.interval = interval self.color_photo_dir = color_photo_dir self.depth_photo_dir = depth_photo_dir self.saved_color_photos = 0 self.saved_depth_photos = 0 def save_photo(self, color_image, depth_image): # 保存彩色图和深度图 filename = datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S-{}.bmp".format(self.saved_color_photos)) color_image.save(os.path.join(self.color_photo_dir, filename), "BMP") depth_image.save(os.path.join(self.depth_photo_dir, filename), "BMP") # print(self.color_photo_dir) # 更新已保存照片数量标签 self.saved_color_photos += 1 self.saved_depth_photos += 1 self.saved_color_photos_signal.emit(self.saved_color_photos) self.saved_depth_photos_signal.emit(self.saved_depth_photos) def run(self): ROT = 3 while self.is_running: # 从相机获取彩色图和深度图 frames = self.pipeline.wait_for_frames() color_frame = frames.get_color_frame() depth_frame = frames.get_depth_frame() depth_image = np.asanyarray(depth_frame.get_data()) color_image = np.asanyarray(color_frame.get_data()) # 转换成 Qt 图像格式 depth_colormap = cv2.applyColorMap(cv2.convertScaleAbs(depth_image, alpha=0.03), cv2.COLORMAP_JET) # 将深度图像转换为伪彩色图像 color_image = QImage(color_image, color_image.shape[1], color_image.shape[0], color_image.shape[1] * 3, QImage.Format_RGB888) depth_colormap = QImage(depth_colormap, depth_colormap.shape[1], depth_colormap.shape[0], depth_colormap.shape[1] * 3, QImage.Format_RGB888) # 显示图像 self.color_label.setPixmap(QPixmap.fromImage(color_image)) self.depth_label.setPixmap(QPixmap.fromImage(depth_colormap)) v = self._dgl.qpin(ROT) if len(v) > 0: self._count += sum(v) if self._count > self._inspect_step: self.save_photo(color_image, depth_colormap) self._count -= self._inspect_step
根据提示信息,'_dgl' 属性在 'ImageThread' 对象中不存在。你需要在类的构造函数中初始化 '_dgl' 属性。
你可以在类的构造函数中添加以下代码:
```python
self._dgl = YourDGLClass()
```
其中,'YourDGLClass' 是你要使用的类所代表的名称。如果你没有定义这个类,你需要先定义这个类并实现相关方法。
此外,在上述代码中,还有一个 '_count' 属性也没有在类的构造函数中初始化。你需要为 '_count' 属性赋予一个初始值,例如:
```python
self._count = 0
```
这样,在执行到 'if self._count > self._inspect_step:' 这行代码时,'_count' 属性就不会出现 'not defined' 的情况了。
改进这段代码import cv2 import numpy as np img = cv2.imread('E:\数字图像处理实验\数字图像处理1.jpg') gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) f = np.fft.fft2(gray) fshift = np.fft.fftshift(f) rows, cols = gray.shape crow, ccol = int(rows/2), int(cols/2) tx, ty = 50, 50 M = np.float32([[1, 0, tx], [0, 1, ty]]) fshift_trans = cv2.warpAffine(fshift, M, (cols, rows)) angle = 30 M = cv2.getRotationMatrix2D((ccol, crow), angle, 1) fshift_rot = cv2.warpAffine(fshift, M, (cols, rows)) fshift_center = fshift_trans[crow-100:crow+100, ccol-100:ccol+100] fshift_rot_center = fshift_rot[crow-100:crow+100, ccol-100:ccol+100] img_trans = np.fft.ifft2(np.fft.ifftshift(fshift_center)).real img_trans = np.uint8(img_trans) img_rot = np.fft.ifft2(np.fft.ifftshift(fshift_rot_center)).real img_rot = np.uint8(img_rot) cv2.imshow('gray', gray) cv2.imshow('img_trans', img_trans) cv2.imshow('img_rot', img_rot) cv2.waitKey(0) cv2.destroyAllWindows()
这段代码主要是对灰度图像进行图像平移和旋转,然后对平移和旋转后的图像进行傅里叶变换和傅里叶反变换,最后显示出平移和旋转后的图像。以下是代码改进的建议:
1. 路径中的反斜杠需要进行转义,或者使用正斜杠来代替,以避免出现路径错误。
2. 在使用傅里叶变换和傅里叶反变换时,可以使用numpy.fft.fft2()和numpy.fft.ifft2(),这样可以简化代码。
3. 在使用傅里叶变换和傅里叶反变换时,需要进行数据类型转换,可以使用numpy.uint8()将复数数组转换为无符号8位整数数组。
4. 在使用cv2.imshow()显示图像时,可以使用cv2.waitKey()来等待键盘输入,或者使用cv2.destroyAllWindows()来关闭所有窗口。
改进后的代码如下:
```
import cv2
import numpy as np
img = cv2.imread('E:/数字图像处理实验/数字图像处理1.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
f = np.fft.fft2(gray)
fshift = np.fft.fftshift(f)
rows, cols = gray.shape
crow, ccol = int(rows/2), int(cols/2)
tx, ty = 50, 50
M = np.float32([[1, 0, tx], [0, 1, ty]])
fshift_trans = cv2.warpAffine(fshift, M, (cols, rows))
angle = 30
M = cv2.getRotationMatrix2D((ccol, crow), angle, 1)
fshift_rot = cv2.warpAffine(fshift, M, (cols, rows))
fshift_center = fshift_trans[crow-100:crow+100, ccol-100:ccol+100]
fshift_rot_center = fshift_rot[crow-100:crow+100, ccol-100:ccol+100]
img_trans = np.fft.ifft2(fshift_center).real
img_trans = np.uint8(img_trans)
img_rot = np.fft.ifft2(fshift_rot_center).real
img_rot = np.uint8(img_rot)
cv2.imshow('gray', gray)
cv2.imshow('img_trans', img_trans)
cv2.imshow('img_rot', img_rot)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
阅读全文