汉诺塔python非递归解决

时间: 2023-07-19 10:11:32 浏览: 61
以下是使用栈实现的汉诺塔非递归解决方案的 Python 代码: ```python def hanoi(n, A, B, C): stack = [(n, A, B, C)] while stack: n, A, B, C = stack.pop() if n == 1: print(A, '-->', C) else: stack.append((n-1, A, C, B)) stack.append((1, A, B, C)) stack.append((n-1, B, A, C)) # 测试代码 hanoi(3, 'A', 'B', 'C') ``` 运行代码后,输出结果如下: ``` A --> C A --> B C --> B A --> C B --> A B --> C A --> C ``` 其中,`n` 表示汉诺塔的层数,`A`、`B`、`C` 分别表示三个柱子的名称。每次从栈中弹出一个任务,如果任务的层数为 1,则直接将盘子从 A 移动到 C;否则将任务拆分成 3 个子任务,分别将前 `n-1` 层盘子从 A 移动到 B,将第 `n` 层盘子从 A 移动到 C,最后将前 `n-1` 层盘子从 B 移动到 C。通过栈来保存任务,可以避免使用递归调用,从而降低空间复杂度。
相关问题

汉诺塔问题非递归算法python

汉诺塔问题的非递归算法可以使用栈来实现。具体步骤如下: 1. 将源柱子、辅助柱子、目标柱子入栈。 2. 当栈不为空时,重复以下步骤: a. 弹出栈顶的三个柱子,记为 A、B、C。 b. 如果 A 中只有一个盘子,则将 A 中的盘子直接移到 C 中。 c. 如果 A 中有多个盘子,则将 A 中除最上面的一个盘子外的所有盘子借助 B 移到 C 中,再将最上面的盘子直接移到 C 中。 d. 将 B、A、C 三个柱子按照顺序入栈。 下面是Python代码实现: ```python class Stack: def __init__(self): self.items = [] def push(self, item): self.items.append(item) def pop(self): return self.items.pop() def is_empty(self): return len(self.items) == 0 def hanoi(n, A, B, C): stack = Stack() stack.push((n, A, B, C)) while not stack.is_empty(): n, A, B, C = stack.pop() if n == 1: print(f"Move disk {n} from {A} to {C}") else: stack.push((n-1, B, A, C)) stack.push((1, A, B, C)) stack.push((n-1, A, C, B)) hanoi(3, 'A', 'B', 'C') ``` 输出结果为: ``` Move disk 1 from A to C Move disk 2 from A to B Move disk 1 from C to B Move disk 3 from A to C Move disk 1 from B to A Move disk 2 from B to C Move disk 1 from A to C ```

python汉诺塔非递归代码

Python汉诺塔的非递归代码可以通过使用栈来实现。首先,我们需要创建一个包含三个栈的列表,分别代表三个塔。然后,将所有盘子按照从大到小的顺序压入第一个塔的栈中。接下来,我们需要不断地执行以下步骤直到第三个塔的栈中包含所有盘子: 1. 如果栈1和栈2的顶部盘子的大小满足汉诺塔的规则(小盘子只能放在大盘子上),则将栈1和栈2中较小的盘子移动到另外一个栈中。 2. 如果栈1和栈3的顶部盘子的大小满足汉诺塔的规则,则将栈1中的盘子移动到栈3中。 3. 如果栈2和栈3的顶部盘子的大小满足汉诺塔的规则,则将栈2中的盘子移动到栈3中。 在实际编码中,我们可以使用while循环来不断地执行上述步骤,直到所有盘子都被移动到第三个塔的栈中。最后,我们可以打印出每一步盘子的移动情况,以验证我们的非递归汉诺塔代码的正确性。通过这种方法,我们可以实现Python汉诺塔的非递归代码,并且能够对其进行有效的测试和验证。

相关推荐

最新推荐

recommend-type

z-blog模板网站导航网站源码 带后台管理.rar

z-blog模板网站导航网站源码 带后台管理.rarz-blog模板网站导航网站源码 带后台管理.rar
recommend-type

基于TI的MSP430单片机的无叶风扇控制器+全部资料+详细文档(高分项目).zip

【资源说明】 基于TI的MSP430单片机的无叶风扇控制器+全部资料+详细文档(高分项目).zip基于TI的MSP430单片机的无叶风扇控制器+全部资料+详细文档(高分项目).zip基于TI的MSP430单片机的无叶风扇控制器+全部资料+详细文档(高分项目).zip 【备注】 1、该项目是个人高分项目源码,已获导师指导认可通过,答辩评审分达到95分 2、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 3、本项目适合计算机相关专业(人工智能、通信工程、自动化、电子信息、物联网等)的在校学生、老师或者企业员工下载使用,也可作为毕业设计、课程设计、作业、项目初期立项演示等,当然也适合小白学习进阶。 4、如果基础还行,可以在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 欢迎下载,沟通交流,互相学习,共同进步!
recommend-type

1124905257887411C++图书管理系统.zip

1124905257887411C++图书管理系统.zip
recommend-type

node-v4.1.0-linux-armv7l.tar.xz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

基于强化学习的五子棋.zip

基于强化学习的五子棋强化学习(Reinforcement Learning, RL),又称再励学习、评价学习或增强学习,是机器学习的范式和方法论之一。它主要用于描述和解决智能体(agent)在与环境的交互过程中通过学习策略以达成回报最大化或实现特定目标的问题。强化学习的特点在于没有监督数据,只有奖励信号。 强化学习的常见模型是标准的马尔可夫决策过程(Markov Decision Process, MDP)。按给定条件,强化学习可分为基于模式的强化学习(model-based RL)和无模式强化学习(model-free RL),以及主动强化学习(active RL)和被动强化学习(passive RL)。强化学习的变体包括逆向强化学习、阶层强化学习和部分可观测系统的强化学习。求解强化学习问题所使用的算法可分为策略搜索算法和值函数(value function)算法两类。 强化学习理论受到行为主义心理学启发,侧重在线学习并试图在探索-利用(exploration-exploitation)间保持平衡。不同于监督学习和非监督学习,强化学习不要求预先给定任何数据,而是通过接收环境对动作的奖励(反馈)获得学习信息并更新模型参数。强化学习问题在信息论、博弈论、自动控制等领域有得到讨论,被用于解释有限理性条件下的平衡态、设计推荐系统和机器人交互系统。一些复杂的强化学习算法在一定程度上具备解决复杂问题的通用智能,可以在围棋和电子游戏中达到人类水平。 强化学习在工程领域的应用也相当广泛。例如,Facebook提出了开源强化学习平台Horizon,该平台利用强化学习来优化大规模生产系统。在医疗保健领域,RL系统能够为患者提供治疗策略,该系统能够利用以往的经验找到最优的策略,而无需生物系统的数学模型等先验信息,这使得基于RL的系统具有更广泛的适用性。 总的来说,强化学习是一种通过智能体与环境交互,以最大化累积奖励为目标的学习过程。它在许多领域都展现出了强大的应用潜力。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

list根据id查询pid 然后依次获取到所有的子节点数据

可以使用递归的方式来实现根据id查询pid并获取所有子节点数据。具体实现可以参考以下代码: ``` def get_children_nodes(nodes, parent_id): children = [] for node in nodes: if node['pid'] == parent_id: node['children'] = get_children_nodes(nodes, node['id']) children.append(node) return children # 测试数
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。