with train_summary_writer.as_default(): tf.summary.scalar('loss',average_train_loss,step=epoch) tf.summary.scalar('psnr',average_train_psnr,step=epoch) tf.summary.scalar('ssim',average_train_ssim,step=epoch)
时间: 2024-01-26 11:02:25 浏览: 134
这段代码是用于在 TensorFlow 中记录训练过程中的损失、PSNR和SSIM等指标的。其中,train_summary_writer是一个TensorFlow的SummaryWriter对象,它用于将训练过程中的数据记录到TensorBoard中。tf.summary.scalar()是一个用于记录标量数据的函数,第一个参数是记录的名称,第二个参数是记录的数值,第三个参数是记录的步数(即训练的轮数)。在训练过程中,每轮结束后都会调用这段代码来记录相应的指标。
相关问题
print('Start training ...') flag = True for epoch in range(epochs): # print('MODE NOW: {}'.format(mode)) for train_images, train_labels in train_ds: train(train_images, train_labels, epoch, training_mode) if flag: bc_model.summary() flag = False for test_images, test_labels in test_ds: test(test_images, test_labels, training_mode) # save model if epoch % 10 == 0 and epoch > 0: print('Saving weights to {}'.format(output_dir)) bc_model.save_weights(os.path.join(output_dir, "bc_model_{}.ckpt".format(epoch))) with metrics_writer.as_default(): tf.summary.scalar('train_loss_rec_gate', train_loss_rec_v.result(), step=epoch) tf.summary.scalar('test_loss_rec_gate', test_loss_rec_v.result(), step=epoch) print('Epoch {} | Train L_gate: {} | Test L_gate: {}' .format(epoch, train_loss_rec_v.result(), test_loss_rec_v.result())) reset_metrics() # reset all the accumulators of metrics print('bla')
这段代码是一个训练深度学习模型的主要代码框架。其中,`epochs`变量表示训练的轮数,`train_ds`和`test_ds`分别表示训练集和测试集的数据集对象。在每一轮训练中,首先对每一个训练图像和标签对调用`train()`函数进行训练,然后对每一个测试图像和标签对调用`test()`函数进行测试。在每一轮训练结束后,将训练集和测试集的损失(loss)记录到指定的输出目录中,以便后续的可视化和分析。
在训练过程中,每隔10个轮次,将模型的权重保存到输出目录中。同时,使用`tf.summary.scalar()`函数将训练集和测试集的损失记录到指定的记录器中。最后,使用`reset_metrics()`函数重置所有指标的累加器,以便下一轮训练的使用。
需要注意的是,此处的`train()`和`test()`函数的实现并未给出,可能是根据具体的模型和任务而定制的。同时,`reset_metrics()`函数的实现也未给出,但可以推测其功能为将所有指标的累加器清零。
def train_step(real_ecg, dim): noise = tf.random.normal(dim) for i in range(disc_steps): with tf.GradientTape() as disc_tape: generated_ecg = generator(noise, training=True) real_output = discriminator(real_ecg, training=True) fake_output = discriminator(generated_ecg, training=True) disc_loss = discriminator_loss(real_output, fake_output) gradients_of_discriminator = disc_tape.gradient(disc_loss, discriminator.trainable_variables) discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator, discriminator.trainable_variables)) ### for tensorboard ### disc_losses.update_state(disc_loss) fake_disc_accuracy.update_state(tf.zeros_like(fake_output), fake_output) real_disc_accuracy.update_state(tf.ones_like(real_output), real_output) ####################### with tf.GradientTape() as gen_tape: generated_ecg = generator(noise, training=True) fake_output = discriminator(generated_ecg, training=True) gen_loss = generator_loss(fake_output) gradients_of_generator = gen_tape.gradient(gen_loss, generator.trainable_variables) generator_optimizer.apply_gradients(zip(gradients_of_generator, generator.trainable_variables)) ### for tensorboard ### gen_losses.update_state(gen_loss) ####################### def train(dataset, epochs, dim): for epoch in tqdm(range(epochs)): for batch in dataset: train_step(batch, dim) disc_losses_list.append(disc_losses.result().numpy()) gen_losses_list.append(gen_losses.result().numpy()) fake_disc_accuracy_list.append(fake_disc_accuracy.result().numpy()) real_disc_accuracy_list.append(real_disc_accuracy.result().numpy()) ### for tensorboard ### # with disc_summary_writer.as_default(): # tf.summary.scalar('loss', disc_losses.result(), step=epoch) # tf.summary.scalar('fake_accuracy', fake_disc_accuracy.result(), step=epoch) # tf.summary.scalar('real_accuracy', real_disc_accuracy.result(), step=epoch) # with gen_summary_writer.as_default(): # tf.summary.scalar('loss', gen_losses.result(), step=epoch) disc_losses.reset_states() gen_losses.reset_states() fake_disc_accuracy.reset_states() real_disc_accuracy.reset_states() ####################### # Save the model every 5 epochs # if (epoch + 1) % 5 == 0: # generate_and_save_ecg(generator, epochs, seed, False) # checkpoint.save(file_prefix = checkpoint_prefix) # Generate after the final epoch display.clear_output(wait=True) generate_and_save_ecg(generator, epochs, seed, False)
下面是将上述代码转换为PyTorch代码的示例:
```python
def train_step(real_ecg, dim):
noise = torch.randn(dim)
for i in range(disc_steps):
generated_ecg = generator(noise, training=True)
real_output = discriminator(real_ecg, training=True)
fake_output = discriminator(generated_ecg, training=True)
disc_loss = discriminator_loss(real_output, fake_output)
discriminator.zero_grad()
disc_loss.backward()
discriminator_optimizer.step()
### for tensorboard ###
disc_losses.update(disc_loss)
fake_disc_accuracy.update(torch.zeros_like(fake_output), fake_output)
real_disc_accuracy.update(torch.ones_like(real_output), real_output)
#######################
for i in range(gen_steps):
generated_ecg = generator(noise, training=True)
fake_output = discriminator(generated_ecg, training=True)
gen_loss = generator_loss(fake_output)
generator.zero_grad()
gen_loss.backward()
generator_optimizer.step()
### for tensorboard ###
gen_losses.update(gen_loss)
#######################
def train(dataset, epochs, dim):
for epoch in tqdm(range(epochs)):
for batch in dataset:
train_step(batch, dim)
disc_losses_list.append(disc_losses.avg)
gen_losses_list.append(gen_losses.avg)
fake_disc_accuracy_list.append(fake_disc_accuracy.avg)
real_disc_accuracy_list.append(real_disc_accuracy.avg)
### for tensorboard ###
# with disc_summary_writer.as_default():
# tf.summary.scalar('loss', disc_losses.result(), step=epoch)
# tf.summary.scalar('fake_accuracy', fake_disc_accuracy.result(), step=epoch)
# tf.summary.scalar('real_accuracy', real_disc_accuracy.result(), step=epoch)
# with gen_summary_writer.as_default():
# tf.summary.scalar('loss', gen_losses.result(), step=epoch)
#######################
disc_losses.reset()
gen_losses.reset()
fake_disc_accuracy.reset()
real_disc_accuracy.reset()
#######################
# Save the model every 5 epochs
# if (epoch + 1) % 5 == 0:
# generate_and_save_ecg(generator, epochs, seed, False)
# checkpoint.save(file_prefix = checkpoint_prefix)
# Generate after the final epoch
# display.clear_output(wait=True)
# generate_and_save_ecg(generator, epochs, seed, False)
```
注意:上述代码仅作为示例,可能需要根据实际情况进行调整和修改。
阅读全文