计算\ln_{(1+i)}{i} 的值
时间: 2024-05-31 11:14:00 浏览: 141
首先,我们可以使用复数的指数形式表示 $i$:
$$i = e^{i\frac{\pi}{2}}$$
然后,我们可以使用对数的性质将 $\ln_{(1+i)}{i}$ 转化为 $\ln{(1+i)}$ 和 $\ln{i}$ 的形式:
$$\ln_{(1+i)}{i} = \frac{\ln{i}}{\ln{(1+i)}}$$
接下来,我们分别计算 $\ln{(1+i)}$ 和 $\ln{i}$ 的值。
首先,计算 $\ln{(1+i)}$:
$$\ln{(1+i)} = \ln{\sqrt{2}e^{i\frac{\pi}{4}}} = \ln{\sqrt{2}} + i\frac{\pi}{4}$$
然后,计算 $\ln{i}$:
$$\ln{i} = \ln{e^{i\frac{\pi}{2}}} = i\frac{\pi}{2}$$
将以上结果代入原式,得到:
$$\ln_{(1+i)}{i} = \frac{i\frac{\pi}{2}}{\ln{\sqrt{2}} + i\frac{\pi}{4}} = \frac{i\frac{\pi}{2}(\ln{\sqrt{2}} - i\frac{\pi}{4})}{(\ln{\sqrt{2}})^2 + (\frac{\pi}{4})^2} = \frac{\pi}{4}\frac{1+i}{\ln{\sqrt{2}} + i\frac{\pi}{4}}$$
化简得到:
$$\ln_{(1+i)}{i} = \frac{\pi}{4}(\cos{\frac{\pi}{4}} + i\sin{\frac{\pi}{4}}) = \frac{\pi}{4} + \frac{\pi}{4}i$$
因此,$\ln_{(1+i)}{i}$ 的值为 $\frac{\pi}{4} + \frac{\pi}{4}i$。
阅读全文
相关推荐


















