import numpy as np from sklearn.cluster import KMeans from sklearn.import metrics from sklearn.metrics import silhouette_score from sklearn.datasets import load_iris X = load_iris().data KMeans_model =kmeans(n_clusters=3,random_state-1).fit(X) labels = KMeans_model.labels_ print("=======k均值聚类的ARL和轮guo系数分别是:=======") dbscan = db_labels print("=======DBSCAN聚类的ARL和轮guo系数分别是:=======")分别使用k均值方法和基于密度方法DBSCAN,输出两种聚类的ARL和轮廓系数
时间: 2023-08-06 19:21:21 浏览: 84
很抱歉,您的代码存在一些语法错误。以下是已经修正的代码:
```python
import numpy as np
from sklearn.cluster import KMeans, DBSCAN
from sklearn.metrics import silhouette_score
from sklearn.datasets import load_iris
X = load_iris().data
kmeans_model = KMeans(n_clusters=3, random_state=1).fit(X)
kmeans_arl = kmeans_model.inertia_
kmeans_silhouette = silhouette_score(X, kmeans_model.labels_)
print("=======k均值聚类的ARL和轮廓系数分别是:=======")
print("ARL: ", kmeans_arl)
print("轮廓系数: ", kmeans_silhouette)
dbscan_model = DBSCAN(eps=0.5, min_samples=5).fit(X)
db_labels = dbscan_model.labels_
db_arl = len(set(db_labels)) - (1 if -1 in db_labels else 0)
db_silhouette = silhouette_score(X, db_labels)
print("=======DBSCAN聚类的ARL和轮廓系数分别是:=======")
print("ARL: ", db_arl)
print("轮廓系数: ", db_silhouette)
```
以上代码中,我们使用了鸢尾花数据集作为示例数据。在k均值聚类中,我们使用了3个聚类中心,而在DBSCAN聚类中,我们使用了eps=0.5和min_samples=5。您可以根据自己的数据集和需求进行适当的调整。
阅读全文