请用Python实现svd算法,不用numpy库
时间: 2023-06-03 11:03:52 浏览: 101
好的,我会为您实现svd算法。
以下是代码示例:
```python
def svd(A):
# 首先计算A^T * A
ATA = [[0]*len(A) for i in range(len(A))]
for i in range(len(A)):
for j in range(len(A)):
for k in range(len(A[0])):
ATA[i][j] += A[k][i] * A[k][j]
# 计算ATA的特征值和特征向量
e_values, e_vectors = power_iteration(ATA)
# 构造特征值和特征向量矩阵
e_values_matrix = [[0]*len(A) for i in range(len(A))]
for i in range(len(A)):
e_values_matrix[i][i] = e_values[i]
e_vectors_matrix = [[0]*len(A) for i in range(len(A))]
for i in range(len(A)):
for j in range(len(A)):
e_vectors_matrix[j][i] = e_vectors[i][j]
# 计算A * 特征向量矩阵
U = [[0]*len(A) for i in range(len(A[0]))]
for i in range(len(A)):
for j in range(len(A[0])):
for k in range(len(A)):
U[j][i] += A[k][i] * e_vectors_matrix[k][j] / math.sqrt(e_values[i])
# 计算A^T * U
V = [[0]*len(A) for i in range(len(A))]
for i in range(len(A)):
for j in range(len(A)):
for k in range(len(A[0])):
V[i][j] += A[k][i] * U[k][j] / math.sqrt(e_values[j])
return U, e_values_matrix, V
def power_iteration(A):
n = len(A)
v = [1/math.sqrt(n)] * n
for i in range(100):
w = [0] * n
for j in range(n):
for k in range(n):
w[j] += A[j][k] * v[k]
v = w / math.sqrt(sum([x**2 for x in w]))
Av = [0] * n
for i in range(n):
for j in range(n):
Av[i] += A[i][j] * v[j]
lambda_ = math.sqrt(sum([x**2 for x in Av]))
return lambda_, [x/lambda_ for x in Av]
```
这是一个比较简单的svd实现,采用幂法来求矩阵的特征值与特征向量。需要注意的是,这个实现没有使用numpy库。
阅读全文