帮我用pytorch写一个图注意力网络的代码
时间: 2023-08-28 12:29:06 浏览: 103
好的,以下是一个简单的图注意力网络的 PyTorch 代码:
```python
import torch
import torch.nn as nn
class GraphAttention(nn.Module):
def __init__(self, in_features, out_features):
super(GraphAttention, self).__init__()
self.W = nn.Parameter(torch.Tensor(in_features, out_features))
self.a = nn.Parameter(torch.Tensor(2*out_features, 1))
nn.init.xavier_uniform_(self.W.data, gain=1.414)
nn.init.xavier_uniform_(self.a.data, gain=1.414)
def forward(self, inputs):
h = torch.mm(inputs, self.W)
attention = torch.cat([h, h], dim=-1) @ self.a
attention = torch.softmax(attention, dim=1)
output = torch.transpose(inputs, 0, 1) @ attention
return output
class GraphAttentionNetwork(nn.Module):
def __init__(self, in_features, out_features, num_heads):
super(GraphAttentionNetwork, self).__init__()
self.attention_layers = nn.ModuleList([GraphAttention(in_features, out_features) for _ in range(num_heads)])
self.output_layer = nn.Linear(num_heads * out_features, out_features)
def forward(self, inputs):
outputs = [attention(inputs) for attention in self.attention_layers]
output = torch.cat(outputs, dim=-1)
output = self.output_layer(output)
return output
```
该代码实现了一个简单的图注意力网络,其中包含多个注意力头,每个头都会计算一个注意力系数,然后将它们合并成一个输出。与 TensorFlow 版本的代码类似,这里也使用了 PyTorch 的 nn.Module 和 nn.Parameter 来实现可训练的参数。
阅读全文