采用邻接表的dfs算法

时间: 2023-09-03 13:16:15 浏览: 51
邻接表的 DFS 算法步骤如下: 1. 首先,创建一个 visited 数组,记录每个节点是否被访问过,初始值为 false。 2. 从某个点开始遍历,将该点设置为已访问。 3. 遍历该点的所有邻居节点,如果邻居节点没有被访问过,则递归访问该邻居节点。 4. 重复步骤 3,直到该节点的所有邻居节点都被访问完毕。 5. 如果还存在未被访问的节点,则从这些节点中选择一个未被访问的节点,重复步骤 2。 6. 如果所有节点都被访问过,则遍历结束。 邻接表的 DFS 算法时间复杂度为 O(V+E),其中 V 是节点数,E 是边数。邻接表适合表示稀疏图,当图是稠密图时,邻接矩阵更适合。
相关问题

c语言邻接表dfs算法代码

邻接表是图的一种常用存储结构,DFS(深度优先搜索)算法则是解决图遍历问题的一种常用算法。下面是C语言邻接表DFS算法的示例代码: ```c #include <stdio.h> #include <stdlib.h> #define MAX_VERTEX_NUM 100 // 最大顶点数 // 邻接表结构体定义 typedef struct ArcNode { int adjvex; // 邻接点的位置 struct ArcNode *next; // 指向下一个邻接点的指针 } ArcNode; typedef struct VNode { int data; // 存储顶点的数据 ArcNode *firstarc; // 指向第一个邻接点的指针 } VNode, AdjList[MAX_VERTEX_NUM]; typedef struct { AdjList vertices; // 邻接表 int vexnum, arcnum; // 图的顶点数和边数 } ALGraph; // 标记顶点是否被访问过的数组,0表示未访问,1表示已访问 int visited[MAX_VERTEX_NUM] = {0}; // DFS函数 void DFS(ALGraph *G, int v) { ArcNode *p; visited[v] = 1; printf("%d ", G->vertices[v].data); // 访问顶点v for (p = G->vertices[v].firstarc; p; p = p->next) { if (!visited[p->adjvex]) { // 如果p未被访问,则递归访问它 DFS(G, p->adjvex); } } } // 创建邻接表 void CreateALGraph(ALGraph *G) { int i, j, k; ArcNode *p; printf("请输入图的顶点数和边数:"); scanf("%d %d", &G->vexnum, &G->arcnum); printf("请输入每个顶点的值:"); for (i = 0; i < G->vexnum; i++) { scanf("%d", &G->vertices[i].data); G->vertices[i].firstarc = NULL; } printf("请输入每条边的两个端点:\n"); for (k = 0; k < G->arcnum; k++) { scanf("%d %d", &i, &j); p = (ArcNode *)malloc(sizeof(ArcNode)); p->adjvex = j; p->next = G->vertices[i].firstarc; G->vertices[i].firstarc = p; // 因为是无向图,所以反向也要存储一次 p = (ArcNode *)malloc(sizeof(ArcNode)); p->adjvex = i; p->next = G->vertices[j].firstarc; G->vertices[j].firstarc = p; } } int main() { ALGraph G; CreateALGraph(&G); printf("DFS遍历结果:"); for (int i = 0; i < G.vexnum; i++) { if (!visited[i]) { // 如果该顶点未被访问,则从它开始DFS遍历 DFS(&G, i); } } return 0; } ```

图的遍历算法 采用邻接表的DFS算法

图的遍历算法中,DFS(深度优先搜索)是一种常见的算法,可以用于查找图中的连通分量、寻找图中的路径等问题。以下是采用邻接表表示图的 DFS 算法的 Python 代码: ```python # 定义节点类 class Node: def __init__(self, val): self.val = val self.neighbors = [] # 定义 DFS 函数 def dfs(node, visited): # 访问当前节点 print(node.val) # 标记当前节点为已访问 visited.add(node) # 递归遍历节点的邻居节点 for neighbor in node.neighbors: if neighbor not in visited: dfs(neighbor, visited) # 创建图 node1 = Node(1) node2 = Node(2) node3 = Node(3) node4 = Node(4) node5 = Node(5) node6 = Node(6) node1.neighbors = [node2, node3] node2.neighbors = [node1, node4, node5] node3.neighbors = [node1, node6] node4.neighbors = [node2, node5] node5.neighbors = [node2, node4] node6.neighbors = [node3] # 遍历图 visited = set() dfs(node1, visited) ``` 在这段代码中,我们定义了一个 Node 类来表示图中的节点,每个节点包含一个值(val)和一个邻居节点列表(neighbors)。我们使用邻接表来表示整个图。然后,我们定义了一个 dfs 函数来进行深度优先遍历。我们从起始节点开始遍历,并对每个节点进行访问。在访问每个节点之前,我们将其标记为已访问,以避免重复访问。接着,我们递归遍历该节点的邻居节点,并对每个邻居节点进行同样的操作。最后,我们创建了一个 visited 集合来保存已经访问过的节点,以确保每个节点只被访问一次。

相关推荐

最新推荐

recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

hive中 的Metastore

Hive中的Metastore是一个关键的组件,它用于存储和管理Hive中的元数据。这些元数据包括表名、列名、表的数据类型、分区信息、表的存储位置等信息。Hive的查询和分析都需要Metastore来管理和访问这些元数据。 Metastore可以使用不同的后端存储来存储元数据,例如MySQL、PostgreSQL、Oracle等关系型数据库,或者Hadoop分布式文件系统中的HDFS。Metastore还提供了API,使得开发人员可以通过编程方式访问元数据。 Metastore的另一个重要功能是跟踪表的版本和历史。当用户对表进行更改时,Metastore会记录这些更改,并且可以让用户回滚到
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、
recommend-type

软件工程每个学期的生活及学习目标

软件工程每个学期的生活及学习目标可能包括以下内容: 1. 学习软件开发的基本理论和实践知识,掌握常用的编程语言和开发工具。 2. 熟悉软件开发的流程和方法,了解软件工程的标准和规范。 3. 掌握软件需求分析、设计、开发、测试、部署和维护的技能,能够独立完成简单的软件开发任务。 4. 培养团队合作的能力,学会与他人进行有效的沟通和协作,共同完成软件开发项目。 5. 提高自己的计算机技术水平,了解最新的软件开发技术和趋势,积极参与开源社区和技术交流活动。 6. 注重学习方法和习惯的培养,养成良好的学习和生活习惯,保持健康的身心状态。 7. 积极参加校内外的实践活动和比赛,拓展自己的视
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

关系数据表示学习

关系数据卢多维奇·多斯桑托斯引用此版本:卢多维奇·多斯桑托斯。关系数据的表示学习机器学习[cs.LG]。皮埃尔和玛丽·居里大学-巴黎第六大学,2017年。英语。NNT:2017PA066480。电话:01803188HAL ID:电话:01803188https://theses.hal.science/tel-01803188提交日期:2018年HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaireUNIVERSITY PIERRE和 MARIE CURIE计算机科学、电信和电子学博士学院(巴黎)巴黎6号计算机科学实验室D八角形T HESIS关系数据表示学习作者:Ludovic DOS SAntos主管:Patrick GALLINARI联合主管:本杰明·P·伊沃瓦斯基为满足计算机科学博士学位的要求而提交的论文评审团成员:先生蒂埃里·A·退休记者先生尤尼斯·B·恩