db.tbdailydate.aggregate([ {$match:{"activity_no":"3VSWM91OVOZS6LP0Z9YWE11O","create_time":{$gte:new Date("2023-05-01T00:00:00.000Z")}}, {$group:{_id:"$create_time",count:{$sum:"$use_num"}}} ])转成Aggregation类方式
时间: 2023-07-19 16:14:59 浏览: 98
Sure, 以下是将该聚合查询转化为Aggregation类方式的代码:
```python
from datetime import datetime
pipeline = [
{
'$match': {
'activity_no': '3VSWM91OVOZS6LP0Z9YWE11O',
'create_time': {'$gte': datetime(2023, 5, 1)}
}
},
{
'$group': {
'_id': '$create_time',
'count': {'$sum': '$use_num'}
}
}
]
result = db.tbdailydate.aggregate(pipeline)
```
请注意,需要在代码中导入datetime模块来创建日期对象并将其传递给聚合管道。还需要将`new Date()`转换为Python datetime对象。
相关问题
db.getCollection("tbdailydate").aggregate([ {$match:{'activity_no':'3VSWM91OVOZS6LP0Z9YWE11O',"create_time":{$gte:new Date("2023-05-12T00:00:00.000Z"),$lte:new Date("2023-05-21T23:59:59.000Z")}}}, {$group :{_id:"$create_time", usenum : {$sum : { $cond: [ {$and: [ {$gte: ["$create_time", new Date("2023-05-12T00:00:00.000Z")]}, {$lte: ["$create_time", new Date("2023-05-12T23:59:59.000Z")]}, ]}, "$use_num", 0 ] } }, weekend : { $sum : { $cond: [ {$and: [ {$gte: ["$create_time", new Date("2023-05-19T00:00:00.000Z")]}, {$lte: ["$create_time", new Date("2023-05-21T23:59:59.000Z")]}, ]}, "$use_num", 0 ] } } }} ])转成java格式的Aggregation方式
Sure! Here's the equivalent Java code for the given MongoDB aggregation pipeline:
```java
import org.bson.Document;
import com.mongodb.client.AggregateIterable;
import com.mongodb.client.MongoCollection;
import static com.mongodb.client.model.Aggregates.*;
import static com.mongodb.client.model.Filters.*;
import static com.mongodb.client.model.Accumulators.*;
// Assuming you have a MongoClient instance and have connected to the database
// Get the collection
MongoCollection<Document> collection = database.getCollection("tbdailydate");
// Create the pipeline
List<Document> pipeline = Arrays.asList(
match(and(eq("activity_no", "3VSWM91OVOZS6LP0Z9YWE11O"),
gte("create_time", new Date("2023-05-12T00:00:00.000Z")),
lte("create_time", new Date("2023-05-21T23:59:59.000Z")))),
group("$create_time",
sum("usenum",
cond(and(gte("create_time", new Date("2023-05-12T00:00:00.000Z")),
lte("create_time", new Date("2023-05-12T23:59:59.000Z")))),
"$use_num", 0)),
sum("weekend",
cond(and(gte("create_time", new Date("2023-05-19T00:00:00.000Z")),
lte("create_time", new Date("2023-05-21T23:59:59.000Z")))),
"$use_num", 0))
);
// Execute the aggregation
AggregateIterable<Document> result = collection.aggregate(pipeline);
```
Please make sure to import the necessary MongoDB Java driver classes and adjust the code according to your specific setup.
给出下面MongoDB查询表达式的等价SQL语句 db. stud.aggregate([ {$match:{ssex: "女"}}, {$group:{_id:"$sdept",count:{$sum:1},asage:{$avg:"$sage"}}}, {$project : {_id: 0,院系: "$_id",人数: "$count",平均年龄: "$asage"}} ]);
下面是MongoDB查询表达式的等价SQL语句:
```
SELECT sdept AS 院系, COUNT(*) AS 人数, AVG(sage) AS 平均年龄
FROM stud
WHERE ssex = '女'
GROUP BY sdept
```
其中,`db.stud.aggregate([ {$match:{ssex: "女"}}, {$group:{_id:"$sdept",count:{$sum:1},asage:{$avg:"$sage"}}}, {$project : {_id: 0,院系: "$_id",人数: "$count",平均年龄: "$asage"}} ])` 表示在 `stud` 集合中查询 `ssex` 字段为 "女" 的文档,对其按照 `sdept` 字段进行分组,并对每一组进行统计计算,最后输出 `院系`、`人数`、`平均年龄` 三个字段的值,而相应的 SQL 查询语句则是上面的语句。
阅读全文