db.tbdailydate.aggregate([ {$match:{"activity_no":"3VSWM91OVOZS6LP0Z9YWE11O","create_time":{$gte:new Date("2023-05-01T00:00:00.000Z")}}, {$group:{_id:"$create_time",count:{$sum:"$use_num"}}} ])转成Aggregation类方式
时间: 2023-07-19 22:14:59 浏览: 86
Sure, 以下是将该聚合查询转化为Aggregation类方式的代码:
```python
from datetime import datetime
pipeline = [
{
'$match': {
'activity_no': '3VSWM91OVOZS6LP0Z9YWE11O',
'create_time': {'$gte': datetime(2023, 5, 1)}
}
},
{
'$group': {
'_id': '$create_time',
'count': {'$sum': '$use_num'}
}
}
]
result = db.tbdailydate.aggregate(pipeline)
```
请注意,需要在代码中导入datetime模块来创建日期对象并将其传递给聚合管道。还需要将`new Date()`转换为Python datetime对象。
相关问题
db.getCollection("tbdailydate").aggregate([ {$match:{'activity_no':'3VSWM91OVOZS6LP0Z9YWE11O',"create_time":{$gte:new Date("2023-05-12T00:00:00.000Z"),$lte:new Date("2023-05-21T23:59:59.000Z")}}}, {$group :{_id:"$create_time", usenum : {$sum : { $cond: [ {$and: [ {$gte: ["$create_time", new Date("2023-05-12T00:00:00.000Z")]}, {$lte: ["$create_time", new Date("2023-05-12T23:59:59.000Z")]}, ]}, "$use_num", 0 ] } }, weekend : { $sum : { $cond: [ {$and: [ {$gte: ["$create_time", new Date("2023-05-19T00:00:00.000Z")]}, {$lte: ["$create_time", new Date("2023-05-21T23:59:59.000Z")]}, ]}, "$use_num", 0 ] } } }} ])转成java格式的Aggregation方式
Sure! Here's the equivalent Java code for the given MongoDB aggregation pipeline:
```java
import org.bson.Document;
import com.mongodb.client.AggregateIterable;
import com.mongodb.client.MongoCollection;
import static com.mongodb.client.model.Aggregates.*;
import static com.mongodb.client.model.Filters.*;
import static com.mongodb.client.model.Accumulators.*;
// Assuming you have a MongoClient instance and have connected to the database
// Get the collection
MongoCollection<Document> collection = database.getCollection("tbdailydate");
// Create the pipeline
List<Document> pipeline = Arrays.asList(
match(and(eq("activity_no", "3VSWM91OVOZS6LP0Z9YWE11O"),
gte("create_time", new Date("2023-05-12T00:00:00.000Z")),
lte("create_time", new Date("2023-05-21T23:59:59.000Z")))),
group("$create_time",
sum("usenum",
cond(and(gte("create_time", new Date("2023-05-12T00:00:00.000Z")),
lte("create_time", new Date("2023-05-12T23:59:59.000Z")))),
"$use_num", 0)),
sum("weekend",
cond(and(gte("create_time", new Date("2023-05-19T00:00:00.000Z")),
lte("create_time", new Date("2023-05-21T23:59:59.000Z")))),
"$use_num", 0))
);
// Execute the aggregation
AggregateIterable<Document> result = collection.aggregate(pipeline);
```
Please make sure to import the necessary MongoDB Java driver classes and adjust the code according to your specific setup.
db.orderHistory.aggregate([ {$match:{"orderType":1}}, {$group:{_id:"$country",MostVisited:{$sum:1}}}, {$sort:{"MostVisited":-1}}, {$limit:10} ])
这是一个 MongoDB 的聚合查询语句,用于统计订单历史中订单类型为1的订单在每个国家的数量,并按照数量从大到小排序,最后返回前10个国家及其订单数量。具体解释如下:
- {$match:{"orderType":1}}:筛选出订单类型为1的订单。
- {$group:{_id:"$country",MostVisited:{$sum:1}}}:按照国家进行分组统计,统计每个国家订单类型为1的订单数量,并将结果保存在 MostVisited 字段中。
- {$sort:{"MostVisited":-1}}:按照 MostVisited 字段降序排序。
- {$limit:10}:返回前10个国家及其订单数量。
注意:这个查询语句中的字段名和具体含义需要根据实际情况进行调整。
阅读全文