stm舵机顺时针90度,逆时针旋转90度

时间: 2023-09-24 21:03:07 浏览: 83
对于STM舵机,要使其顺时针旋转90度或逆时针旋转90度,你可以使用以下方法: 1. 使用PWM信号控制:通过调整PWM信号的占空比来控制舵机的转动角度。对于STM舵机,一般情况下,占空比100%对应于舵机的最大角度(通常是180度)。因此,你可以将控制信号的占空比设置为50%来使舵机旋转到中间位置(0度),然后将占空比增加到75%来使其顺时针旋转90度,或减少到25%来使其逆时针旋转90度。 2. 使用舵机控制模块:对于一些较复杂的控制需求,你可以使用专门的舵机控制模块,如Arduino等。这些模块通常提供简单易用的函数库,你可以通过调用相应的函数来控制舵机的角度。具体的函数和使用方法可以参考相关文档或示例代码。 需要注意的是,具体的控制方法可能会因不同的舵机型号、控制模块或开发平台而有所差异。因此,在实际应用中,你可能需要查阅相关的文档或资料,并根据具体情况进行调试和调整。
相关问题

基于STM32进行软件设计舵机控制,舵机顺时针10度,逆时针旋转10度。给定两个键KEY1和KEY2.,KEY1按下舵机顺时针10度,KEY2按下舵机逆时针10度。

好的,这是一个基于STM32的舵机控制的问题。首先,您需要连接舵机到STM32的PWM输出引脚。然后,您需要编写STM32的代码,以便在按下KEY1时顺时针旋转舵机10度,在按下KEY2时逆时针旋转舵机10度。 以下是一个简单的示例代码: ```c #include "stm32f4xx.h" #define PWM_PERIOD 20000 // PWM周期,单位为us #define PWM_PULSE_MIN 1000 // PWM脉冲宽度最小值,单位为us #define PWM_PULSE_MAX 2000 // PWM脉冲宽度最大值,单位为us #define ROTATE_ANGLE 10 // 旋转角度 void delay_ms(uint32_t ms) { uint32_t i; for (i = 0; i < ms; i++) { uint32_t j; for (j = 0; j < 2000; j++); } } int main(void) { RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE); RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE); GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz; GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL; GPIO_Init(GPIOA, &GPIO_InitStructure); GPIO_PinAFConfig(GPIOA, GPIO_PinSource5, GPIO_AF_TIM2); TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; TIM_TimeBaseStructure.TIM_Period = PWM_PERIOD - 1; TIM_TimeBaseStructure.TIM_Prescaler = 84 - 1; TIM_TimeBaseStructure.TIM_ClockDivision = 0; TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure); TIM_OCInitTypeDef TIM_OCInitStructure; TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1; TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; TIM_OCInitStructure.TIM_Pulse = PWM_PULSE_MIN; TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High; TIM_OC2Init(TIM2, &TIM_OCInitStructure); TIM_Cmd(TIM2, ENABLE); while (1) { if (GPIO_ReadInputDataBit(GPIOA, GPIO_Pin_0) == Bit_SET) { // KEY1 uint32_t pulse = TIM_GetCapture2(TIM2); if (pulse + ROTATE_ANGLE * (PWM_PULSE_MAX - PWM_PULSE_MIN) / 180 <= PWM_PULSE_MAX) { TIM_SetCompare2(TIM2, pulse + ROTATE_ANGLE * (PWM_PULSE_MAX - PWM_PULSE_MIN) / 180); } else { TIM_SetCompare2(TIM2, PWM_PULSE_MAX); } delay_ms(50); } if (GPIO_ReadInputDataBit(GPIOA, GPIO_Pin_1) == Bit_SET) { // KEY2 uint32_t pulse = TIM_GetCapture2(TIM2); if (pulse >= ROTATE_ANGLE * (PWM_PULSE_MAX - PWM_PULSE_MIN) / 180) { TIM_SetCompare2(TIM2, pulse - ROTATE_ANGLE * (PWM_PULSE_MAX - PWM_PULSE_MIN) / 180); } else { TIM_SetCompare2(TIM2, PWM_PULSE_MIN); } delay_ms(50); } } } ``` 在这个代码中,我们使用了TIM2定时器的PWM功能来控制舵机。我们将GPIOA的5号引脚配置为TIM2的通道2的复用功能,以输出PWM信号。然后,我们设置了TIM2的PWM周期为20ms,预分频器为84,脉冲宽度最小值为1ms,最大值为2ms。在while循环中,我们检测KEY1和KEY2的状态,如果按下了KEY1,则将PWM脉冲宽度增加10度,如果按下了KEY2,则将PWM脉冲宽度减少10度,最后延迟50毫秒。 当然,这只是一个简单的示例代码,您需要根据您的具体舵机型号和STM32型号进行相应的修改。

stm32f401ll库中写一个按键控制舵机顺时针旋转每次旋转30°,到达180°后逆时针旋转,每次旋转45°的代码

以下是一个使用按键控制舵机顺时针旋转每次旋转30°,到达180°后逆时针旋转每次旋转45°的示例代码,基于STM32F401系列微控制器和STM32 LL库: ```c #include "stm32f4xx_ll_bus.h" #include "stm32f4xx_ll_gpio.h" #include "stm32f4xx_ll_tim.h" #define SERVO_MAX_ANGLE 180 #define SERVO_MIN_ANGLE 0 void GPIO_Init(void); void TIM_Init(void); int main(void) { GPIO_Init(); TIM_Init(); uint8_t angle = SERVO_MIN_ANGLE; uint8_t direction = 1; // 1代表顺时针方向,-1代表逆时针方向 while (1) { // 检测按键状态 if (LL_GPIO_IsInputPinSet(GPIOA, LL_GPIO_PIN_0)) { // 按键被按下,改变舵机旋转方向 direction = -direction; } // 更新舵机角度 angle += direction * 15; // 顺时针旋转30°,逆时针旋转45° // 限制角度在合法范围内 if (angle > SERVO_MAX_ANGLE) { angle = SERVO_MAX_ANGLE; } else if (angle < SERVO_MIN_ANGLE) { angle = SERVO_MIN_ANGLE; } // 更新舵机PWM占空比 LL_TIM_OC_SetCompareCH1(TIM2, angle * 10); // 延时一段时间,这里使用简单的循环延时 for (uint32_t i = 0; i < 100000; i++); } } void GPIO_Init(void) { // 使能GPIOA时钟 LL_AHB1_GRP1_EnableClock(LL_AHB1_GRP1_PERIPH_GPIOA); // 配置GPIOA的引脚为输入模式(按键) LL_GPIO_SetPinMode(GPIOA, LL_GPIO_PIN_0, LL_GPIO_MODE_INPUT); LL_GPIO_SetPinPull(GPIOA, LL_GPIO_PIN_0, LL_GPIO_PULL_UP); } void TIM_Init(void) { // 使能TIM2时钟 LL_APB1_GRP1_EnableClock(LL_APB1_GRP1_PERIPH_TIM2); // 配置TIM2的定时器参数 LL_TIM_InitTypeDef tim_init_struct; LL_TIM_StructInit(&tim_init_struct); tim_init_struct.Prescaler = (SystemCoreClock / 1000000) - 1; // 设置预分频值为1MHz tim_init_struct.Autoreload = 19999; // 设置自动重装载值 tim_init_struct.ClockDivision = LL_TIM_CLOCKDIVISION_DIV1; // 设置时钟分频系数 LL_TIM_Init(TIM2, &tim_init_struct); // 配置TIM2的PWM输出通道 LL_TIM_OC_InitTypeDef tim_oc_init_struct; LL_TIM_OC_StructInit(&tim_oc_init_struct); tim_oc_init_struct.OCMode = LL_TIM_OCMODE_PWM1; // 设置PWM模式为模式1 tim_oc_init_struct.OCState = LL_TIM_OCSTATE_ENABLE; // 使能PWM输出 tim_oc_init_struct.CompareValue = 0; // 初始占空比为0 LL_TIM_OC_Init(TIM2, LL_TIM_CHANNEL_CH1, &tim_oc_init_struct); // 配置TIM2的定时器和PWM输出通道的互联关系 LL_TIM_SetTriggerOutput(TIM2, LL_TIM_TRGO_UPDATE); // 启动TIM2 LL_TIM_EnableCounter(TIM2); LL_TIM_EnableAllOutputs(TIM2); } ``` 在上述示例代码中,我们使用GPIOA的Pin 0引脚作为按键输入引脚,用于改变舵机旋转方向。我们使用TIM2的PWM输出功能来驱动舵机,通过修改PWM占空比来控制舵机的角度。代码中使用了一个循环延时函数,简单地延时一段时间,您可以根据实际需求修改延时方式。 请注意,上述代码仅供参考,实际应用中需根据舵机的具体控制方式和引脚连接进行适当的修改和配置。

相关推荐

最新推荐

recommend-type

Python学习笔记16 - 猜数字小游戏

猜数字小游戏的相关函数,与主程序搭配使用
recommend-type

机器人比赛内容的讲解,帮助简单了解一下机器人比赛的注意事项

适用于未参加过机器人比赛的小伙伴,简单了解一下注意事项。
recommend-type

shumaguan.rar

shumaguan.rar
recommend-type

信捷MP3系列步进电机CAD图纸.zip

信捷MP3系列步进电机CAD图纸
recommend-type

基于Springboot的足球青训俱乐部管理系统(免费提供全套java开源毕业设计源码+数据库+开题报告+论文+ppt+使用说明

随着社会经济的快速发展,人们对足球俱乐部的需求日益增加,加快了足球健身俱乐部的发展,足球俱乐部管理工作日益繁忙,传统的管理方式已经无法满足足球俱乐部管理需求,因此,为了提高足球俱乐部管理效率,足球俱乐部管理后台系统应运而生。 本文重点阐述了足球青训俱乐部管理后台系统的开发过程,以实际运用为开发背景,基于Spring Boot框架,运用了Java技术和MYSQL数据库进行开发设计,充分保证系统的安全性和稳定性。本系统界面良好,操作简单方便,通过系统概述、系统分析、系统设计、数据库设计、系统测试这几个部分,详细的说明了系统的开发过程,最后并对整个开发过程进行了总结,实现了俱乐部相关信息管理的重要功能。 本系统经过测试,运行效果稳定,操作方便、快捷,是一个功能全面、实用性好、安全性高,并具有良好的可扩展性、可维护性的足球青训俱乐部管理后台系统。 关键字:俱乐部管理;Spring Boot框架;Java技术;MYSQL数据库
recommend-type

BSC绩效考核指标汇总 (2).docx

BSC(Balanced Scorecard,平衡计分卡)是一种战略绩效管理系统,它将企业的绩效评估从传统的财务维度扩展到非财务领域,以提供更全面、深入的业绩衡量。在提供的文档中,BSC绩效考核指标主要分为两大类:财务类和客户类。 1. 财务类指标: - 部门费用的实际与预算比较:如项目研究开发费用、课题费用、招聘费用、培训费用和新产品研发费用,均通过实际支出与计划预算的百分比来衡量,这反映了部门在成本控制上的效率。 - 经营利润指标:如承保利润、赔付率和理赔统计,这些涉及保险公司的核心盈利能力和风险管理水平。 - 人力成本和保费收益:如人力成本与计划的比例,以及标准保费、附加佣金、续期推动费用等与预算的对比,评估业务运营和盈利能力。 - 财务效率:包括管理费用、销售费用和投资回报率,如净投资收益率、销售目标达成率等,反映公司的财务健康状况和经营效率。 2. 客户类指标: - 客户满意度:通过包装水平客户满意度调研,了解产品和服务的质量和客户体验。 - 市场表现:通过市场销售月报和市场份额,衡量公司在市场中的竞争地位和销售业绩。 - 服务指标:如新契约标保完成度、续保率和出租率,体现客户服务质量和客户忠诚度。 - 品牌和市场知名度:通过问卷调查、公众媒体反馈和总公司级评价来评估品牌影响力和市场认知度。 BSC绩效考核指标旨在确保企业的战略目标与财务和非财务目标的平衡,通过量化这些关键指标,帮助管理层做出决策,优化资源配置,并驱动组织的整体业绩提升。同时,这份指标汇总文档强调了财务稳健性和客户满意度的重要性,体现了现代企业对多维度绩效管理的重视。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】Flask中的会话与用户管理

![python网络编程合集](https://media.geeksforgeeks.org/wp-content/uploads/20201021201514/pythonrequests.PNG) # 2.1 用户注册和登录 ### 2.1.1 用户注册表单的设计和验证 用户注册表单是用户创建帐户的第一步,因此至关重要。它应该简单易用,同时收集必要的用户信息。 * **字段设计:**表单应包含必要的字段,如用户名、电子邮件和密码。 * **验证:**表单应验证字段的格式和有效性,例如电子邮件地址的格式和密码的强度。 * **错误处理:**表单应优雅地处理验证错误,并提供清晰的错误消
recommend-type

卷积神经网络实现手势识别程序

卷积神经网络(Convolutional Neural Network, CNN)在手势识别中是一种非常有效的机器学习模型。CNN特别适用于处理图像数据,因为它能够自动提取和学习局部特征,这对于像手势这样的空间模式识别非常重要。以下是使用CNN实现手势识别的基本步骤: 1. **输入数据准备**:首先,你需要收集或获取一组带有标签的手势图像,作为训练和测试数据集。 2. **数据预处理**:对图像进行标准化、裁剪、大小调整等操作,以便于网络输入。 3. **卷积层(Convolutional Layer)**:这是CNN的核心部分,通过一系列可学习的滤波器(卷积核)对输入图像进行卷积,以
recommend-type

BSC资料.pdf

"BSC资料.pdf" 战略地图是一种战略管理工具,它帮助企业将战略目标可视化,确保所有部门和员工的工作都与公司的整体战略方向保持一致。战略地图的核心内容包括四个相互关联的视角:财务、客户、内部流程和学习与成长。 1. **财务视角**:这是战略地图的最终目标,通常表现为股东价值的提升。例如,股东期望五年后的销售收入达到五亿元,而目前只有一亿元,那么四亿元的差距就是企业的总体目标。 2. **客户视角**:为了实现财务目标,需要明确客户价值主张。企业可以通过提供最低总成本、产品创新、全面解决方案或系统锁定等方式吸引和保留客户,以实现销售额的增长。 3. **内部流程视角**:确定关键流程以支持客户价值主张和财务目标的实现。主要流程可能包括运营管理、客户管理、创新和社会责任等,每个流程都需要有明确的短期、中期和长期目标。 4. **学习与成长视角**:评估和提升企业的人力资本、信息资本和组织资本,确保这些无形资产能够支持内部流程的优化和战略目标的达成。 绘制战略地图的六个步骤: 1. **确定股东价值差距**:识别与股东期望之间的差距。 2. **调整客户价值主张**:分析客户并调整策略以满足他们的需求。 3. **设定价值提升时间表**:规划各阶段的目标以逐步缩小差距。 4. **确定战略主题**:识别关键内部流程并设定目标。 5. **提升战略准备度**:评估并提升无形资产的战略准备度。 6. **制定行动方案**:根据战略地图制定具体行动计划,分配资源和预算。 战略地图的有效性主要取决于两个要素: 1. **KPI的数量及分布比例**:一个有效的战略地图通常包含20个左右的指标,且在四个视角之间有均衡的分布,如财务20%,客户20%,内部流程40%。 2. **KPI的性质比例**:指标应涵盖财务、客户、内部流程和学习与成长等各个方面,以全面反映组织的绩效。 战略地图不仅帮助管理层清晰传达战略意图,也使员工能更好地理解自己的工作如何对公司整体目标产生贡献,从而提高执行力和组织协同性。