以上代码中 for prob, next_state, reward, done in env.P[state][action]: p[state, action, next_state] += prob r[state, action] += (reward * prob) 解释
时间: 2024-04-10 10:32:00 浏览: 104
这段代码是用来计算状态转移概率和即时奖励的。它通过遍历环境对象中的转移概率矩阵env.P[state][action],其中state表示当前状态,action表示当前动作。
在每个转移中,我们使用四个变量prob、next_state、reward和done来遍历每个可能的下一个状态和对应的概率、即时奖励以及是否终止状态。其中,prob表示从当前状态经过当前动作转移到下一个状态的概率,next_state表示下一个状态的索引,reward表示在当前状态采取当前动作后获得的即时奖励,done表示是否达到了终止状态。
然后,根据这些变量的值,我们将转移概率累加到p数组中的对应位置(p[state, action, next_state]),并将即时奖励乘以概率后累加到r数组中的对应位置(r[state, action])。
通过这样的遍历和累加操作,我们可以得到p数组和r数组,用于后续的线性规划求解最优值函数和最优动作值函数。
相关问题
for state in range(env.nS - 1): for action in range(env.nA): for prob, next_state, reward, done in env.P[state][action]: # 用于遍历每一个可能的状态及其概率,奖励和终止 p[state, action, next_state] += prob r[state, action] += (reward * prob) 中prob是什么
在这段代码中,`prob` 是一个概率值,从当前状态 `state` 执行动作 `action` 后转移到下一个状态 `next_state` 的概率。具体来说,`.P[state][action]`一个包含多个元组的列表,每个元组一种转移情况每个元组里的四个值分别是 `prob`(转移概率)、`next_state`(下一个状态)、`reward`(奖励值)和 `done`(是否终止状态)。
在循环中,程序通过遍历所有可能的状态和动作,并对每个转移情况中的概率和奖励进行累加。这样,最后得到的 `p[state, action, next_state]` 就是从当前状态 `state` 执行动作 `action` 后,转移到下一个状态 `next_state` 的累计概率。而 `r[state, action]` 则是从当前状态 `state` 执行动作 `action` 后累计获得的奖励值。
给我TRPO解决BipedalWalkerHardcore_v3的代码
TRPO(Trust Region Policy Optimization)是一种用于强化学习的优化算法,用于更新策略参数。下面是使用TRPO解决BipedalWalkerHardcore_v3的Python代码示例:
```
import gym
import numpy as np
import tensorflow as tf
from scipy import optimize
env = gym.make('BipedalWalkerHardcore-v3')
# 策略网络
class PolicyNet:
def __init__(self, state_dim, action_dim, hidden_size):
self.state = tf.placeholder(tf.float32, [None, state_dim])
l1 = tf.layers.dense(self.state, hidden_size, tf.nn.relu)
l2 = tf.layers.dense(l1, hidden_size, tf.nn.relu)
self.action_mean = tf.layers.dense(l2, action_dim, tf.nn.tanh)
self.action_std = tf.Variable(1.0, trainable=True)
self.action = tf.placeholder(tf.float32, [None, action_dim])
self.advantage = tf.placeholder(tf.float32, [None])
normal_dist = tf.distributions.Normal(self.action_mean, self.action_std)
log_prob = normal_dist.log_prob(self.action)
loss = -tf.reduce_mean(log_prob * self.advantage)
kl = tf.distributions.kl_divergence(normal_dist, normal_dist)
self.kl_mean = tf.reduce_mean(kl)
self.train_op = self._create_train_op(loss)
def _create_train_op(self, loss):
optimizer = tf.train.AdamOptimizer()
grads_and_vars = optimizer.compute_gradients(loss)
flat_grads = tf.concat([tf.reshape(g, [-1]) for g, _ in grads_and_vars], axis=0)
var_shapes = [tf.reshape(v, [-1]).shape for _, v in grads_and_vars]
var_sizes = [np.prod(s) for s in var_shapes]
cum_sizes = np.cumsum([0] + var_sizes)
flat_params = tf.concat([tf.reshape(v, [-1]) for _, v in grads_and_vars], axis=0)
kl_grads = tf.gradients(self.kl_mean, grads_and_vars)
kl_grads = [tf.reshape(g, [-1]) / tf.cast(tf.reduce_prod(s), tf.float32) for g, (s, _) in zip(kl_grads, var_shapes)]
kl_grad = tf.concat(kl_grads, axis=0)
grad_kl_grad = tf.reduce_sum(flat_grads * kl_grad)
hessian_vector_product = tf.gradients(grad_kl_grad, flat_params)
hessian_vector_product = tf.concat(hessian_vector_product, axis=0)
grads_and_hvp = list(zip(hessian_vector_product, flat_params))
flat_grad_hvp = tf.concat([tf.reshape(g, [-1]) for g, _ in grads_and_hvp], axis=0)
fisher_vector_product = flat_grad_hvp + 0.1 * flat_params
gradient = tf.stop_gradient(fisher_vector_product)
learning_rate = tf.sqrt(0.01 / tf.norm(gradient))
clipped_gradient = tf.clip_by_norm(gradient, 0.5)
train_op = tf.assign_sub(flat_params, learning_rate * clipped_gradient)
train_op = tf.group(*[tf.assign(v, p) for (v, _), p in zip(grads_and_vars, tf.split(flat_params, cum_sizes[1:-1]))])
return train_op
def get_action(self, state):
return self.action_mean.eval(feed_dict={self.state: state.reshape(1, -1)})[0]
def get_kl(self, state, action):
return self.kl_mean.eval(feed_dict={self.state: state, self.action: action})
def train(self, state, action, advantage):
feed_dict = {self.state: state, self.action: action, self.advantage: advantage}
self.train_op.run(feed_dict=feed_dict)
# 值网络
class ValueNet:
def __init__(self, state_dim, hidden_size):
self.state = tf.placeholder(tf.float32, [None, state_dim])
l1 = tf.layers.dense(self.state, hidden_size, tf.nn.relu)
l2 = tf.layers.dense(l1, hidden_size, tf.nn.relu)
self.value = tf.layers.dense(l2, 1)
self.target_value = tf.placeholder(tf.float32, [None])
loss = tf.reduce_mean(tf.square(self.value - self.target_value))
self.train_op = tf.train.AdamOptimizer().minimize(loss)
def get_value(self, state):
return self.value.eval(feed_dict={self.state: state.reshape(1, -1)})[0, 0]
def train(self, state, target_value):
feed_dict = {self.state: state, self.target_value: target_value}
self.train_op.run(feed_dict=feed_dict)
# 训练
def train():
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.shape[0]
hidden_size = 64
policy_net = PolicyNet(state_dim, action_dim, hidden_size)
value_net = ValueNet(state_dim, hidden_size)
gamma = 0.99
lam = 0.95
batch_size = 2048
max_step = 1000000
render = False
state = env.reset()
for step in range(max_step):
states = []
actions = []
rewards = []
values = []
for _ in range(batch_size):
action = policy_net.get_action(state)
next_state, reward, done, _ = env.step(action)
states.append(state)
actions.append(action)
rewards.append(reward)
if done:
values.append(0)
state = env.reset()
else:
values.append(value_net.get_value(next_state))
state = next_state
if render:
env.render()
values = np.array(values)
returns = np.zeros_like(rewards)
advantages = np.zeros_like(rewards)
last_return = 0
last_value = 0
last_advantage = 0
for t in reversed(range(batch_size)):
returns[t] = rewards[t] + gamma * last_return
delta = rewards[t] + gamma * last_value - values[t]
advantages[t] = delta + gamma * lam * last_advantage
last_return = returns[t]
last_value = values[t]
last_advantage = advantages[t]
advantages = (advantages - np.mean(advantages)) / np.std(advantages)
policy_net.train(np.array(states), np.array(actions), advantages)
value_net.train(np.array(states), returns)
if step % 100 == 0:
print('step=%d, reward=%f' % (step, np.mean(rewards)))
if np.mean(rewards) > 300:
render = True
train()
```
这段代码使用TensorFlow实现了一个策略网络和一个值网络,使用TRPO算法更新策略参数和值函数参数。在训练过程中,首先采集一定数量的数据,然后计算每个状态的回报和优势,并使用这些数据来更新策略网络和值网络。在每一步训练之后,打印出当前的平均回报。当平均回报超过300时,开始渲染环境。
阅读全文