class NormalizedActions(gym.ActionWrapper): def _action(self, action): low = self.action_space.low high = self.action_space.high action = low + (action + 1.0) * 0.5 * (high - low) action = np.clip(action, low, high) return action def _reverse_action(self, action): low = self.action_space.low high = self.action_space.high action = 2 * (action - low) / (high - low) - 1 action = np.clip(action, low, high) return actions

时间: 2024-02-26 15:56:17 浏览: 22
这段代码是用于对 gym 环境的动作空间进行规范化处理的。其中,_action() 方法将原始的动作值 action 进行了线性变换,使其在动作空间的范围内,同时对变换后的值进行了裁剪,以确保其仍然在动作空间内。_reverse_action() 方法则是对规范化后的动作值进行反变换,将其还原为原始的动作值。这种规范化处理可以使得不同的智能体算法在同一个环境中更加容易地训练和比较,同时也可以提高智能体的训练效率。
相关问题

class StockTradingEnv(gym.Env): metadata = {'render.modes': ['human']} def __init__(self, data, window_size): super(StockTradingEnv, self).__init__() self.data = data self.window_size = window_size self.action_space = spaces.Discrete(3) # 买入,卖出,持有 self.observation_space = spaces.Box(low=0, high=1, shape=(6, self.window_size + 1), dtype=np.float32) self.profit = 0 self.total_reward = 0 self.current_step = self.window_size self.done = False

这段代码是一个基于 Gym 库实现的股票交易环境 StockTradingEnv,其中包括了环境的初始化、动作空间、状态空间、当前状态等信息。具体来说,这个环境中的动作空间为三个离散值,分别代表买入、卖出和持有;状态空间为一个 6x(window_size+1) 的矩阵,其中包括了当前股票的开、高、低、收、成交量以及当前持有的股票数量;当前状态为当前时间步的窗口大小加一。

tianshou基于pytorch的SACPolicy连续空间算法算法训练,输出训练模型pth,并利用writer.add_graph输出网络结构

好的,您可以按照以下步骤使用tianshou进行SACPolicy的训练,并且输出训练模型pth,并利用writer.add_graph输出网络结构。 1. 安装tianshou 您可以使用以下命令安装最新版本的tianshou: ``` pip install tianshou ``` 2. 构建环境 您需要构建一个gym环境,然后将其传递给tianshou的环境包装器。以下是一个示例环境: ```python import gym import numpy as np class MyEnv(gym.Env): def __init__(self): self.action_space = gym.spaces.Box(low=-1, high=1, shape=(1,)) self.observation_space = gym.spaces.Box(low=-1, high=1, shape=(1,)) self.state = np.zeros((1,)) def reset(self): self.state = np.zeros((1,)) return self.state def step(self, action): action = np.clip(action, -1, 1) reward = -np.abs(action) self.state += action done = False return self.state, reward, done, {} ``` 在这个环境中,我们使用一个连续的动作空间和一个连续的观测空间,每个步骤的奖励为动作的绝对值的负数。 3. 定义模型 使用tianshou的智能体API,我们可以定义我们的SACPolicy模型: ```python import torch import torch.nn.functional as F from tianshou.policy import SACPolicy class MyModel(torch.nn.Module): def __init__(self, obs_shape, action_shape): super().__init__() self.obs_dim = obs_shape[0] self.act_dim = action_shape[0] self.fc1 = torch.nn.Linear(self.obs_dim, 64) self.fc2 = torch.nn.Linear(64, 64) self.mu_head = torch.nn.Linear(64, self.act_dim) self.sigma_head = torch.nn.Linear(64, self.act_dim) self.value_head = torch.nn.Linear(64, 1) def forward(self, obs, state=None, info={}): x = F.relu(self.fc1(obs)) x = F.relu(self.fc2(x)) mu = self.mu_head(x) sigma = F.softplus(self.sigma_head(x)) value = self.value_head(x) dist = torch.distributions.Normal(mu, sigma) return dist, value ``` 在这个模型中,我们使用两个完全连接的层来处理观察,并将输出分别传递到一个均值头和一个标准差头中。我们还添加了一个价值头来估计每个状态的价值。最后,我们将均值和标准差组合成一个正态分布,以便我们可以从中采样动作。 4. 训练模型 使用tianshou的训练API,我们可以定义我们的训练循环: ```python import torch.optim as optim from tianshou.trainer import offpolicy_trainer from tianshou.data import Collector, ReplayBuffer from torch.utils.tensorboard import SummaryWriter env = MyEnv() train_envs = gym.make('MyEnv-v0') test_envs = gym.make('MyEnv-v0') # 建立replay buffer buffer = ReplayBuffer(size=10000, buffer_num=1) # 建立collector train_collector = Collector(policy, train_envs, buffer) test_collector = Collector(policy, test_envs) # 建立optimizer optimizer = optim.Adam(policy.parameters(), lr=3e-4) # 定义训练循环 result = offpolicy_trainer( policy, train_collector, test_collector, optimizer, max_epoch=100, step_per_epoch=1000, collect_per_step=1, episode_per_test=10, batch_size=64, train_fn=None, test_fn=None, stop_fn=None, writer=writer, verbose=True) ``` 在这个循环中,我们首先创建一个回放缓冲区和一个collector,然后使用Adam优化器来优化我们的模型参数。我们使用offpolicy_trainer方法来训练我们的模型,其中我们设置了一些超参数,如最大epoch数、每个epoch的步数、每个步骤的收集数等。 5. 输出模型 训练完成后,我们可以将模型保存为一个.pth文件: ```python torch.save(policy.state_dict(), 'model.pth') ``` 6. 输出网络结构 最后,我们可以使用以下代码将网络结构写入TensorBoard: ```python writer.add_graph(policy, torch.zeros((1, 1))) ``` 在这个例子中,我们使用一个大小为1的观察空间,以便我们可以将模型传递给writer.add_graph方法。这将在TensorBoard中显示我们的网络结构。

相关推荐

最新推荐

recommend-type

node-v0.8.10-sunos-x64.tar.gz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

【课程设计】实现的金融风控贷款违约预测python源码.zip

【课程设计】实现的金融风控贷款违约预测python源码.zip
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

云原生架构与soa架构区别?

云原生架构和SOA架构是两种不同的架构模式,主要有以下区别: 1. 设计理念不同: 云原生架构的设计理念是“设计为云”,注重应用程序的可移植性、可伸缩性、弹性和高可用性等特点。而SOA架构的设计理念是“面向服务”,注重实现业务逻辑的解耦和复用,提高系统的灵活性和可维护性。 2. 技术实现不同: 云原生架构的实现技术包括Docker、Kubernetes、Service Mesh等,注重容器化、自动化、微服务等技术。而SOA架构的实现技术包括Web Services、消息队列等,注重服务化、异步通信等技术。 3. 应用场景不同: 云原生架构适用于云计算环境下的应用场景,如容器化部署、微服务
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

数字舵机控制程序流程图

以下是数字舵机控制程序的流程图: ![数字舵机控制程序流程图](https://i.imgur.com/2fgKUQs.png) 1. 初始化引脚:设置舵机控制引脚为输出模式。 2. 初始化舵机:将舵机控制引脚输出的PWM信号设置为初始值,初始化舵机的位置。 3. 接收控制信号:通过串口或者其他方式接收舵机控制信号。 4. 解析控制信号:解析接收到的控制信号,确定舵机需要转动的角度和方向。 5. 转动舵机:根据解析后的控制信号,设置舵机控制引脚输出的PWM信号的占空比,使舵机转动到目标位置。 6. 延时:为了保证舵机转动到目标位置后稳定,需要延时一段时间。 7. 返回接收控制信