使用sklearn实现层次聚类算法对鸢尾花数据进行聚类
时间: 2023-11-28 07:05:26 浏览: 102
基于sklearn的LogisticRegression鸢尾花多类分类实践
以下是使用sklearn实现层次聚类算法对鸢尾花数据进行聚类的Python代码:
```python
from sklearn.datasets import load_iris
from sklearn.cluster import AgglomerativeClustering
# 加载鸢尾花数据
iris = load_iris()
# 构建层次聚类模型
model = AgglomerativeClustering(n_clusters=3)
# 训练模型并进行聚类
clusters = model.fit_predict(iris.data)
# 输出聚类结果
print(clusters)
```
在上述代码中,我们首先加载了鸢尾花数据,然后使用AgglomerativeClustering类构建了一个层次聚类模型,其中n_clusters参数指定了聚类数量为3。接下来,我们使用fit_predict方法对模型进行训练并进行聚类,最后输出聚类结果。
需要注意的是,由于鸢尾花数据集是带有标签的数据集,因此我们可以通过比较聚类结果和真实标签来评估聚类效果。具体评估方法可以使用sklearn中的评估指标函数,例如adjusted_rand_score、normalized_mutual_info_score等。
阅读全文