用5个权值{3, 2, 4, 5, 1}构造的哈夫曼(Huffman)树的带权路径长度是____。
时间: 2024-06-01 19:08:13 浏览: 85
构造哈夫曼树的过程如下:
1. 对权值进行从小到大的排序:{1, 2, 3, 4, 5}。
2. 取出权值最小的两个节点1和2,合并成一个新节点3,其权值为1+2=3。此时节点集合为{3, 3, 4, 5}。
3. 取出权值最小的两个节点3和3,合并成一个新节点6,其权值为3+3=6。此时节点集合为{4, 5, 6}。
4. 取出权值最小的两个节点4和5,合并成一个新节点9,其权值为4+5=9。此时节点集合为{6, 9}。
5. 取出权值最小的两个节点6和9,合并成一个新节点15,其权值为6+9=15。此时节点集合为{15}。
哈夫曼树构造完成,它的带权路径长度为:(1*2)+(2*2)+(3*2)+(4*1)+(5*1)=19。
因此,用5个权值{3, 2, 4, 5, 1}构造的哈夫曼树的带权路径长度是19。
相关问题
哈夫曼树,第一行输入一个数n,表示叶结点的个数。 需要用这些叶结点生成哈夫曼树,根据哈夫曼树的概念,这些结点有权值,即weight,题目需要输出哈夫曼树的带权路径长度(WPL)。
好的,我来给出一个实现。首先,我们需要定义一个节点类来表示哈夫曼树中的节点,包含权值和左右子节点。代码如下:
```python
class HuffmanNode:
def __init__(self, weight, left=None, right=None):
self.weight = weight
self.left = left
self.right = right
```
接着,我们需要构建哈夫曼树。我们可以通过一个优先队列来实现,每次取出权值最小的两个节点,合并成一个新节点,并将其放回优先队列中,直到只剩下一个节点。代码如下:
```python
import heapq
def build_huffman_tree(weights):
"""
Build a Huffman tree from a list of weights.
"""
nodes = [HuffmanNode(weight) for weight in weights]
heapq.heapify(nodes)
while len(nodes) > 1:
left = heapq.heappop(nodes)
right = heapq.heappop(nodes)
parent = HuffmanNode(left.weight + right.weight, left, right)
heapq.heappush(nodes, parent)
return nodes[0]
```
最后,我们需要计算哈夫曼树的带权路径长度。遍历树的所有叶子节点,将每个叶子节点的权值乘以其到根节点的距离,然后将所有结果相加即可。代码如下:
```python
def huffman_wpl(root, depth=0):
"""
Calculate the WPL of a Huffman tree.
"""
if not root:
return 0
if not root.left and not root.right:
return root.weight * depth
return huffman_wpl(root.left, depth+1) + huffman_wpl(root.right, depth+1)
```
完整代码如下:
```python
import heapq
class HuffmanNode:
def __init__(self, weight, left=None, right=None):
self.weight = weight
self.left = left
self.right = right
def build_huffman_tree(weights):
"""
Build a Huffman tree from a list of weights.
"""
nodes = [HuffmanNode(weight) for weight in weights]
heapq.heapify(nodes)
while len(nodes) > 1:
left = heapq.heappop(nodes)
right = heapq.heappop(nodes)
parent = HuffmanNode(left.weight + right.weight, left, right)
heapq.heappush(nodes, parent)
return nodes[0]
def huffman_wpl(root, depth=0):
"""
Calculate the WPL of a Huffman tree.
"""
if not root:
return 0
if not root.left and not root.right:
return root.weight * depth
return huffman_wpl(root.left, depth+1) + huffman_wpl(root.right, depth+1)
n = int(input())
weights = list(map(int, input().split()))
root = build_huffman_tree(weights)
wpl = huffman_wpl(root)
print(wpl)
```
这样,我们就可以输入叶子节点个数和权值,输出哈夫曼树的带权路径长度了。
c语言求哈夫曼树的带权路径长度
要求哈夫曼树的带权路径长度,需要先构建哈夫曼树,然后对树中每个叶子节点求出它与根节点的路径长度,再将每个叶子节点的路径长度乘上它的权值,最后把所有叶子节点的乘积相加即可得到带权路径长度。
以下是 C 语言实现哈夫曼树带权路径长度的代码示例:
```c
#include <stdio.h>
#include <stdlib.h>
typedef struct node {
int weight;
struct node *left;
struct node *right;
} Node;
typedef struct heap {
int size;
int capacity;
Node **nodes;
} Heap;
Node* create_node(int weight) {
Node* node = (Node*) malloc(sizeof(Node));
node->weight = weight;
node->left = NULL;
node->right = NULL;
return node;
}
Heap* create_heap(int capacity) {
Heap* heap = (Heap*) malloc(sizeof(Heap));
heap->size = 0;
heap->capacity = capacity;
heap->nodes = (Node**) malloc(sizeof(Node*) * capacity);
return heap;
}
void swap_node(Node **a, Node **b) {
Node *temp = *a;
*a = *b;
*b = temp;
}
void heapify(Heap *heap, int index) {
int smallest = index;
int left = 2 * index + 1;
int right = 2 * index + 2;
if (left < heap->size && heap->nodes[left]->weight < heap->nodes[smallest]->weight) {
smallest = left;
}
if (right < heap->size && heap->nodes[right]->weight < heap->nodes[smallest]->weight) {
smallest = right;
}
if (smallest != index) {
swap_node(&heap->nodes[smallest], &heap->nodes[index]);
heapify(heap, smallest);
}
}
void build_heap(Heap *heap) {
int n = heap->size;
for (int i = n / 2 - 1; i >= 0; i--) {
heapify(heap, i);
}
}
Node* extract_min(Heap *heap) {
Node* min_node = heap->nodes[0];
heap->nodes[0] = heap->nodes[heap->size - 1];
heap->size--;
heapify(heap, 0);
return min_node;
}
void insert(Heap *heap, Node *node) {
if (heap->size == heap->capacity) {
printf("Heap is full!\n");
return;
}
heap->size++;
int i = heap->size - 1;
while (i > 0 && node->weight < heap->nodes[(i - 1) / 2]->weight) {
heap->nodes[i] = heap->nodes[(i - 1) / 2];
i = (i - 1) / 2;
}
heap->nodes[i] = node;
}
Node* build_huffman_tree(int *weights, int n) {
Heap* heap = create_heap(n);
for (int i = 0; i < n; i++) {
Node* node = create_node(weights[i]);
insert(heap, node);
}
build_heap(heap);
while (heap->size > 1) {
Node* left = extract_min(heap);
Node* right = extract_min(heap);
Node* parent = create_node(left->weight + right->weight);
parent->left = left;
parent->right = right;
insert(heap, parent);
}
Node* root = extract_min(heap);
free(heap->nodes);
free(heap);
return root;
}
void calculate_wpl(Node* node, int depth, int *wpl) {
if (node == NULL) {
return;
}
if (node->left == NULL && node->right == NULL) {
*wpl += node->weight * depth;
return;
}
calculate_wpl(node->left, depth + 1, wpl);
calculate_wpl(node->right, depth + 1, wpl);
}
int huffman_wpl(int *weights, int n) {
Node* root = build_huffman_tree(weights, n);
int wpl = 0;
calculate_wpl(root, 0, &wpl);
return wpl;
}
int main() {
int weights[] = {1, 3, 2, 7, 5};
int n = sizeof(weights) / sizeof(weights[0]);
int wpl = huffman_wpl(weights, n);
printf("Huffman tree WPL = %d\n", wpl);
return 0;
}
```
在以上示例中,`build_huffman_tree` 函数用于构建哈夫曼树,`calculate_wpl` 函数用于计算带权路径长度,`huffman_wpl` 函数用于将二者结合起来计算哈夫曼树的带权路径长度。最后,在 `main` 函数中,我们定义了一个权值数组,并调用 `huffman_wpl` 函数计算哈夫曼树的带权路径长度,然后输出结果。
阅读全文