while run: draw(win, grid, ROWS, width) for event in pygame.event.get(): if event.type == pygame.QUIT: run = False # 鼠标左键点击设置起点、终点或障碍物 if pygame.mouse.get_pressed()[0]: pos = pygame.mouse.get_pos() row, col = get_clicked_pos(pos, ROWS, width) node = grid[row][col] if not start and node != end: start = node start.make_start() elif not end and node != start: end = node end.make_end() elif node != end and node != start: node.make_barrier() # 鼠标右键点击删除起点、终点或障碍物 elif pygame.mouse.get_pressed()[2]: pos = pygame.mouse.get_pos() row, col = get_clicked_pos(pos, ROWS, width) node = grid[row][col] node.reset() if node == start: start = None elif node == end: end = None # 按下空格键开始或重新开始路径规划 if event.type == pygame.KEYDOWN: if event.key == pygame.K_SPACE and not started and start and end: for row in grid: for node in row: node.update_neighbours(grid) algorithm(lambda: draw(win, grid, ROWS, width), grid, start, end) # 按下C键清空地图 if event.key == pygame.K_c: start = None end = None grid = make_grid(ROWS, width) pygame.quit()这段代码的运行逻辑

时间: 2024-02-10 13:19:23 浏览: 39
这段代码实现了一个基于Pygame库的路径规划可视化程序。它通过绘制一个网格来表示地图,其中每个格子可以是起点、终点或障碍物。程序通过监听鼠标和键盘事件来实现用户交互,例如点击鼠标左键设置起点、终点或障碍物,点击鼠标右键删除起点、终点或障碍物,按下空格键开始或重新开始路径规划,按下C键清空地图。程序使用了一个算法来计算最短路径,并在可视化界面上展示出来。当算法运行时,程序会不断调用绘图函数来更新可视化界面,直到算法完成路径规划或者用户终止程序。
相关问题

while run: draw(win, grid, ROWS, width) for event in pygame.event.get(): if event.type == pygame.QUIT: run = False

这段代码是一个 Pygame 应用程序的主循环。它在一个 while 循环中不断执行,直到 `run` 变量被设置为 False。在每次循环中,程序会调用 `draw` 函数来绘制可视化界面。接着,程序会通过 `pygame.event.get()` 函数获取 Pygame 中的事件,例如鼠标点击、键盘按键等等。程序通过检查每个事件的类型来决定如何处理它们。在这段代码中,如果检测到 `pygame.QUIT` 事件,就会将 `run` 变量设置为 False,从而退出主循环,关闭 Pygame 应用程序。

用pygame写一个A*算法代码

好的,以下是用pygame实现A*算法的代码示例: ```python import pygame import math from queue import PriorityQueue WIDTH = 800 WIN = pygame.display.set_mode((WIDTH, WIDTH)) pygame.display.set_caption("A* Path Finding Algorithm") RED = (255, 0, 0) GREEN = (0, 255, 0) BLUE = (0, 0, 255) YELLOW = (255, 255, 0) WHITE = (255, 255, 255) BLACK = (0, 0, 0) PURPLE = (128, 0, 128) ORANGE = (255, 165, 0) GREY = (128, 128, 128) TURQUOISE = (64, 224, 208) class Spot: def __init__(self, row, col, width): self.row = row self.col = col self.x = row * width self.y = col * width self.color = WHITE self.neighbours = [] self.width = width def get_pos(self): return self.row, self.col def is_closed(self): return self.color == RED def is_open(self): return self.color == GREEN def is_barrier(self): return self.color == BLACK def is_start(self): return self.color == ORANGE def is_end(self): return self.color == TURQUOISE def reset(self): self.color = WHITE def make_start(self): self.color = ORANGE def make_closed(self): self.color = RED def make_open(self): self.color = GREEN def make_barrier(self): self.color = BLACK def make_end(self): self.color = TURQUOISE def make_path(self): self.color = PURPLE def draw(self, win): pygame.draw.rect(win, self.color, (self.x, self.y, self.width, self.width)) def update_neighbours(self, grid): self.neighbours = [] if self.row < ROWS - 1 and not grid[self.row + 1][self.col].is_barrier(): # DOWN self.neighbours.append(grid[self.row + 1][self.col]) if self.row > 0 and not grid[self.row - 1][self.col].is_barrier(): # UP self.neighbours.append(grid[self.row - 1][self.col]) if self.col < ROWS - 1 and not grid[self.row][self.col + 1].is_barrier(): # RIGHT self.neighbours.append(grid[self.row][self.col + 1]) if self.col > 0 and not grid[self.row][self.col - 1].is_barrier(): # LEFT self.neighbours.append(grid[self.row][self.col - 1]) def h(p1, p2): x1, y1 = p1 x2, y2 = p2 return abs(x1 - x2) + abs(y1 - y2) def reconstruct_path(came_from, current, draw): while current in came_from: current = came_from[current] current.make_path() draw() def algorithm(draw, grid, start, end): count = 0 open_set = PriorityQueue() open_set.put((0, count, start)) came_from = {} g_score = {spot: float("inf") for row in grid for spot in row} g_score[start] = 0 f_score = {spot: float("inf") for row in grid for spot in row} f_score[start] = h(start.get_pos(), end.get_pos()) open_set_hash = {start} while not open_set.empty(): for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() current = open_set.get()[2] open_set_hash.remove(current) if current == end: reconstruct_path(came_from, end, draw) end.make_end() start.make_start() return True for neighbour in current.neighbours: temp_g_score = g_score[current] + 1 if temp_g_score < g_score[neighbour]: came_from[neighbour] = current g_score[neighbour] = temp_g_score f_score[neighbour] = temp_g_score + h(neighbour.get_pos(), end.get_pos()) if neighbour not in open_set_hash: count += 1 open_set.put((f_score[neighbour], count, neighbour)) open_set_hash.add(neighbour) neighbour.make_open() draw() if current != start: current.make_closed() return False def make_grid(rows, width): grid = [] gap = width // rows for i in range(rows): grid.append([]) for j in range(rows): spot = Spot(i, j, gap) grid[i].append(spot) return grid def draw_grid(win, rows, width): gap = width // rows for i in range(rows): pygame.draw.line(win, GREY, (0, i * gap), (width, i * gap)) for j in range(rows): pygame.draw.line(win, GREY, (j * gap, 0), (j * gap, width)) def draw(win, grid, rows, width): win.fill(WHITE) for row in grid: for spot in row: spot.draw(win) draw_grid(win, rows, width) pygame.display.update() def get_clicked_pos(pos, rows, width): gap = width // rows y, x = pos row = y // gap col = x // gap return row, col def main(win, width): ROWS = 50 grid = make_grid(ROWS, width) start = None end = None run = True while run: draw(win, grid, ROWS, width) for event in pygame.event.get(): if event.type == pygame.QUIT: run = False if pygame.mouse.get_pressed()[0]: # LEFT pos = pygame.mouse.get_pos() row, col = get_clicked_pos(pos, ROWS, width) spot = grid[row][col] if not start and spot != end: start = spot start.make_start() elif not end and spot != start: end = spot end.make_end() elif spot != end and spot != start: spot.make_barrier() elif pygame.mouse.get_pressed()[2]: # RIGHT pos = pygame.mouse.get_pos() row, col = get_clicked_pos(pos, ROWS, width) spot = grid[row][col] spot.reset() if spot == start: start = None elif spot == end: end = None if event.type == pygame.KEYDOWN: if event.key == pygame.K_SPACE and start and end: for row in grid: for spot in row: spot.update_neighbours(grid) algorithm(lambda: draw(win, grid, ROWS, width), grid, start, end) if event.key == pygame.K_c: start = None end = None grid = make_grid(ROWS, width) pygame.quit() main(WIN, WIDTH) ``` 希望对你有帮助!

相关推荐

最新推荐

recommend-type

###对华为OD分布式操作系统的详细介绍

华为OD
recommend-type

2110220116吴骏博.py

2110220116吴骏博.py
recommend-type

基于Java的ApplicationPower快速项目生成脚手架设计源码

ApplicationPower项目生成脚手架设计源码:该项目基于Java开发,包含284个文件,主要使用Java和Shell语言。ApplicationPower是一个快速的项目生成脚手架,旨在帮助开发者快速搭建项目框架,包括创建项目结构、配置文件、开发环境等,提高开发效率。
recommend-type

基于MATLAB实现的OFDM经典同步算法之一Park算法仿真,附带Park算法经典文献+代码文档+使用说明文档.rar

CSDN IT狂飙上传的代码均可运行,功能ok的情况下才上传的,直接替换数据即可使用,小白也能轻松上手 【资源说明】 基于MATLAB实现的OFDM经典同步算法之一Park算法仿真,附带Park算法经典文献+代码文档+使用说明文档.rar 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2020b;若运行有误,根据提示GPT修改;若不会,私信博主(问题描述要详细); 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可后台私信博主; 4.1 期刊或参考文献复现 4.2 Matlab程序定制 4.3 科研合作 功率谱估计: 故障诊断分析: 雷达通信:雷达LFM、MIMO、成像、定位、干扰、检测、信号分析、脉冲压缩 滤波估计:SOC估计 目标定位:WSN定位、滤波跟踪、目标定位 生物电信号:肌电信号EMG、脑电信号EEG、心电信号ECG 通信系统:DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测识别融合、LEACH协议、信号检测、水声通信 5、欢迎下载,沟通交流,互相学习,共同进步!
recommend-type

基于MATLAB实现的imu和视觉里程计 kalman滤波器 进行融合+使用说明文档.rar

CSDN IT狂飙上传的代码均可运行,功能ok的情况下才上传的,直接替换数据即可使用,小白也能轻松上手 【资源说明】 基于MATLAB实现的imu和视觉里程计 kalman滤波器 进行融合+使用说明文档.rar 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2020b;若运行有误,根据提示GPT修改;若不会,私信博主(问题描述要详细); 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可后台私信博主; 4.1 期刊或参考文献复现 4.2 Matlab程序定制 4.3 科研合作 功率谱估计: 故障诊断分析: 雷达通信:雷达LFM、MIMO、成像、定位、干扰、检测、信号分析、脉冲压缩 滤波估计:SOC估计 目标定位:WSN定位、滤波跟踪、目标定位 生物电信号:肌电信号EMG、脑电信号EEG、心电信号ECG 通信系统:DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测识别融合、LEACH协议、信号检测、水声通信 5、欢迎下载,沟通交流,互相学习,共同进步!
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】MATLAB用遗传算法改进粒子群GA-PSO算法

![MATLAB智能算法合集](https://static.fuxi.netease.com/fuxi-official/web/20221101/83f465753fd49c41536a5640367d4340.jpg) # 2.1 遗传算法的原理和实现 遗传算法(GA)是一种受生物进化过程启发的优化算法。它通过模拟自然选择和遗传机制来搜索最优解。 **2.1.1 遗传算法的编码和解码** 编码是将问题空间中的解表示为二进制字符串或其他数据结构的过程。解码是将编码的解转换为问题空间中的实际解的过程。常见的编码方法包括二进制编码、实数编码和树形编码。 **2.1.2 遗传算法的交叉和
recommend-type

openstack的20种接口有哪些

以下是OpenStack的20种API接口: 1. Identity (Keystone) API 2. Compute (Nova) API 3. Networking (Neutron) API 4. Block Storage (Cinder) API 5. Object Storage (Swift) API 6. Image (Glance) API 7. Telemetry (Ceilometer) API 8. Orchestration (Heat) API 9. Database (Trove) API 10. Bare Metal (Ironic) API 11. DNS
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。