Prove If A → C and B → C and ABC → D, then A → D 数据库
时间: 2024-06-02 12:12:41 浏览: 187
To prove that A → D, we need to show that if A is true, then D must also be true.
Given that ABC → D, we know that if A and B and C are all true, then D must also be true.
We are also given that A → C and B → C, which means that if A is true, then C must also be true, and if B is true, then C must also be true.
Combining these two statements, if A is true, then B is also true (because if A were false, then we wouldn't have enough information to determine whether B is true or false). Therefore, if A and B and C are all true, then D must also be true (because of the ABC → D statement).
Therefore, we can conclude that A → D.
相关问题
Prove If A → C and B → C and ABC → D, then A → D
To prove that A → D, we need to show that if A is true, then D must also be true.
We know that ABC → D, which means that if A, B, and C are all true, then D must also be true. Since A → C and B → C, we know that if A and B are true, then C must also be true.
Therefore, if A and B are true, then C is true, and if C is true, then D is true. So, if A is true, then D must also be true, and we have proved that A → D.
Let A, B,C and D be sets. Prove that (A × B) ∩ (C × D) = (A ∩ C) × (B ∩ D).
答案:我们可以证明两个集合相等的方法是证明它们互相包含。首先,假设 (x, y) 属于 (A × B) ∩ (C × D),那么 x 属于 A 且 y 属于 B,同时 x 属于 C 且 y 属于 D。因此,x 属于 A ∩ C 且 y 属于 B ∩ D,即 (x, y) 属于 (A ∩ C) × (B ∩ D)。因此,(A × B) ∩ (C × D) 包含于 (A ∩ C) × (B ∩ D)。
反过来,假设 (x, y) 属于 (A ∩ C) × (B ∩ D),那么 x 属于 A 且 x 属于 C,同时 y 属于 B 且 y 属于 D。因此,(x, y) 属于 A × B 且 (x, y) 属于 C × D,即 (x, y) 属于 (A × B) ∩ (C × D)。因此,(A ∩ C) × (B ∩ D) 包含于 (A × B) ∩ (C × D)。
因此,我们证明了两个集合互相包含,从而证明了它们相等。
阅读全文
相关推荐
![-](https://img-home.csdnimg.cn/images/20241231045021.png)
![-](https://img-home.csdnimg.cn/images/20241231044930.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![application/x-rar](https://img-home.csdnimg.cn/images/20210720083606.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)