如果我们使用的是mse损失函数。并且,模型改为?:class SampleConvNet(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(1, 16, 8, 2, padding=3) self.conv2 = nn.Conv2d(16, 32, 4, 2) self.fc1 = nn.Linear(32 * 4 * 4, 32) self.fc2 = nn.Linear(32, 10) def forward(self, x): # x of shape [B, 1, 28, 28] x = F.relu(self.conv1(x)) # -> [B, 16, 14, 14] x = F.max_pool2d(x, 2, 1) # -> [B, 16, 13, 13] x = F.relu(self.conv2(x)) # -> [B, 32, 5, 5] x = F.max_pool2d(x, 2, 1) # -> [B, 32, 4, 4] x = x.view(-1, 32 * 4 * 4) # -> [B, 512] x = F.relu(self.fc1(x)) # -> [B, 32] x = self.fc2(x) # -> [B, 10] return x
时间: 2023-11-07 09:04:40 浏览: 118
如果我们使用MSE损失函数,那么我们需要将模型的输出改为一个连续值而不是softmax概率分布。因此,我们可以将模型的最后一层从`self.fc2 = nn.Linear(32, 10)`改为`self.fc2 = nn.Linear(32, 1)`。这样就可以得到一个连续值的输出。
同时,在模型的训练过程中,我们需要使用MSELoss代替交叉熵损失。可以在训练循环中使用`loss_fn = nn.MSELoss()`来定义损失函数。同时,为了确保模型的输出值在0到1之间,可以在输出层添加一个sigmoid激活函数。
修改后的模型代码如下:
```
class SampleConvNet(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(1, 16, 8, 2, padding=3)
self.conv2 = nn.Conv2d(16, 32, 4, 2)
self.fc1 = nn.Linear(32 * 4 * 4, 32)
self.fc2 = nn.Linear(32, 1)
def forward(self, x):
# x of shape [B, 1, 28, 28]
x = F.relu(self.conv1(x)) # -> [B, 16, 14, 14]
x = F.max_pool2d(x, 2, 1) # -> [B, 16, 13, 13]
x = F.relu(self.conv2(x)) # -> [B, 32, 5, 5]
x = F.max_pool2d(x, 2, 1) # -> [B, 32, 4, 4]
x = x.view(-1, 32 * 4 * 4) # -> [B, 512]
x = F.relu(self.fc1(x)) # -> [B, 32]
x = self.fc2(x) # -> [B, 1]
x = torch.sigmoid(x) # -> [B, 1]
return x
```
同时,在训练循环中,我们需要将模型的输出与标签都转换为浮点型。修改后的训练循环代码如下:
```
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
images = images.float().to(device)
labels = labels.float().to(device)
outputs = model(images)
loss = loss_fn(outputs, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (i + 1) % 100 == 0:
print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'
.format(epoch + 1, num_epochs, i + 1, total_step, loss.item()))
```
阅读全文